簡易檢索 / 詳目顯示

研究生: 黃政凱
Cheng-kai Huang
論文名稱: 風力發電系統之雷擊暫態分析
Transient Analysis of Wind Power Generation Systems under Lightning
指導教授: 張宏展
Hong-chan Chang
口試委員: 梁從主
Tsorng-juu Liang
陳建富
Jiann-fuh Chen
吳瑞南
Ruay-nan Wu
郭政謙
Cheng-chien Kuo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 94
中文關鍵詞: 風力發電機雷擊絕緣破壞
外文關鍵詞: wind turbine, lightning, dielectric breakdown
相關次數: 點閱:216下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地區的風力發電機多裝置於沿海與空曠等閃電落雷頻繁之區域,較易遭受雷擊並導致損壞,因此,本文旨於提出合宜之避雷策略,以期降低風力發電機之雷害損失。首先,建立風力發電系統之相關模型,包含塔架、控制線、避雷器、地下電纜及系統電源等。其次,建立雷擊電流模型,以模擬在風力發電機遭受雷擊時,藉由接地系統連接方式之改變,分析塔架內控制線絕緣層之電壓分佈、控制設備之電壓值,以及塔頂與控制線間之跨壓值等影響。最後,建立風場模型,以瞭解雷擊前後,對於風力發電機暫態電壓之影響。
    研究過程發現,對於塔架與設備共同接地之系統,在遭受雷擊事故時,過大的接地電阻將造成風電控制系統等敏感設備之危害,同時,對於控制線路兩端絕緣層跨壓之突升,亦可能危及維護保養者之人身安全。其次,透過將風場間各風力發電機之避雷接地系統相互連接,以觀察雷擊對風場中各風力發電機變壓器繞組絕緣之影響;而模擬結果顯示,本文所提之塔架與設備個別接地,以及將風力發電機避雷接地相互連接之方法,將可有效改善風力發電機在發生雷擊事故時,其暫態電壓對於風電系統之不良影響,同時減少風力發電設備絕緣破壞現象發生。


    In Taiwan, wind turbines are mostly set up along coast and wide field where they are frequently struck and damaged by lightning. For this reason, this thesis presents lightning protection strategies to reduce losses of lightning damage for wind turbines. First of all, a comprehensive wind turbine lightning protection model is established. It contains tower, control line, underground cables, and power system equivalent models. Secondary, lightning current model is established for simulating the influences by changing the connection of grounding system. The voltage distribution on dielectric insulation of control line inside the tower, the voltage of controlling equipment, and the voltage difference between tower top and control line are analyzed. Finally, a wind farm model is established to examine the influence of transient voltage under lightning.
    Simulation results for a stand-alone wind turbine system show that if the grounding systems of the tower and equipment are connected together too large grounding resistance may lead to damage of the sensitive equipments of wind turbine directly. Moreover, the surge voltage of the dielectric insulation on both ends of control line might endanger the staff of maintenance. For the wind farm system, the grounding systems of arresters for various wind turbines are connected together or isolated to investigate the impact on dielectric insulation of transformer winding for wind turbine. Simulation results obtained show that the tower and equipment are grounded separately, and the ground systems of the wind turbines all joined together will be beneficial to reducing the influence of transient voltage and the dielectric breakdown of wind power equipments.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 研究動機及目的 1 1.2 研究步驟 3 1.3 章節概要 4 第二章 雷擊簡介及國外相關經驗 6 2.1 前言 6 2.2 雷擊簡介 6 2.3 雷電的形成 7 2.3.1 雷雨雲之形成 7 2.3.2 雷雨雲中的放電現象 7 2.3.3 前導放電與回擊現象 9 2.3.4 多重雷擊現象 10 2.4 國外風力發電機遭受雷害之回顧 11 2.4.1 損壞事件頻率 11 2.4.2 風力發電機各部位損壞的統計 12 2.4.3 風力發電機大小與機齡的問題 13 2.4.4 損壞修復費用 15 2.4.5 對發電效益之衝擊 16 2.4.6 風力發電機雷擊故障之季節性分佈 18 2.4.7 國外相關雷擊損壞案例 19 第三章 風力發電系統之雷擊模型建立 22 3.1 模擬軟體的選用 22 3.1.1 EMTP/ATP 模擬軟體簡介 22 3.1.2 ATPDraw介紹 23 3.2 雷擊電流函數 24 3.2.1 雷擊電流參數與其含意 27 3.2.2 雷擊模型 28 3.3 風力發電機之塔架模型 29 3.4 控制線之模型與參數確定 32 3.5 控制線與塔架之分佈電容計算 34 3.6 塔架對地分佈電容之計算 34 3.7 電力電纜 37 3.7.1 電力電纜參數 37 3.7.2 分析頻率 38 3.7.3 電力電纜模型建立 39 3.8 避雷器 40 3.9 系統等效電源模型建立 42 第四章 風力發電機之雷擊模擬分析 43 4.1 模擬流程的擬定 43 4.2 模擬條件設定 45 4.2.1 風力發電機之葉片 45 4.2.2 塔架內部線路 47 4.2.3 落雷資料統計 49 4.3 模擬案例 50 4.3.1 案例一:控制線路之絕緣層電壓分佈 50 4.3.2 案例二:跨於控制設備上之電壓 57 4.3.3 案例三:塔頂與控制線之跨壓 60 4.4 本章結論 63 第五章 風力發電場之雷擊影響分析 64 5.1 模擬流程的擬定 64 5.2 系統架構 65 5.3 模擬案例 68 5.3.1 案例一:風力發電機避雷接地系統間不做連接 68 5.3.2 案例二:風機間之避雷接地系統互相連接 78 5.3.3 案例三:增加併聯風力發電機組數目之影響 85 5.4 本章結論 86 第六章 結論與未來展望 88 6.1 結論 88 6.1.1 風力發電機之雷擊模擬分析 88 6.1.2 風力發電場之雷擊影響分析 89 6.2 未來展望 89 參考文獻 91

    [1] 顏世雄,「介紹國外的風力發電設備的雷害調查」,臺電工程月刊,第692期,第74∼84頁,2006年4月。
    [2] 顏世雄,「避雷工程講義」,台北巿,全華圖書,民國九十六年。
    [3] IEC TR 61400-24, “Wind Turbine Generator System-Part 24: Lightning Protection,” First edition, 2002-2007.
    [4] 陳以彥,江榮城,林建廷,「台灣雷擊分析特性統計分析」,中華民國第23屆電力工程研討會論文,第1269-1274頁,民國89年。
    [5] 張文英,「雷、防雷及避雷」,電機月刊,第一卷第三期3月號,第89-96頁,民國80年。
    [6] C. William, Hart and W.M. Edgar, “Lightning and Lightning Protection,” 1979.
    [7] 王琮賢,「線路用避雷器於塔腳電阻變化之可行性研究」,國立台灣科技大學碩士論文,民國94年。
    [8] 顏世雄,「談風力發電設備的各種災害(上)-介紹國外風力發電設備機構的雷害」,機電現場技術,第三十三期12月號,第148-164頁,民國96年。
    [9] Chen Yazhou, Liu Shanghe, Wu Xiaorong and Zhang Feizhou, “A New Kind of Lightning Channel-Base Current Function,” 3rd International Symposium on Electromagnetic Compatibility, 2002, May 21-24, pp.304-307.
    [10] E. Garbagnati and L. Pandini, “Current Distribution and Indirect Effects on a Wind Power Generator Following a Lightning Stroke,” IEA Annex XI, pp.79-83, March 8-9, 1994.
    [11] B. Glushakow, “Effective Lightning Protection for Wind Turbine Generators,” IEEE Transactions on Energy Conversion, Vol. 22, No.1, pp.214-222, 2007.
    [12] 傅正財、葉蜚譽,「低壓系統防雷保護」,北京,中國電力出版社,2004。
    [13] U.S. Department of Energy - EPRI Wind Turbine Verification Program, “Iowa/Nebraska Distributed Wind Generation Projects First and Second-Year Operating Experience: 1999-2001,” Final Report, December 2001.
    [14] Electric Research Institute, Electromagnetic Transients Program (EMTP) Application Guide, 1986.
    [15] EMTP Theory Book, Electromagnetic Transients Program Reference Manual, July 1987.
    [16] Y. Chen, S. Liu, X. Wu and F. Zhang, “A New Kind of Lightning Channel-Base Current Function,” 3rd International Symposium on Electromagnetic Compatibility, pp.304-307, May 21-24, 2002.
    [17] F. Heidler, “Traveling Current Source Model for LEMP Calculation,” Proc.6th Int. Zurich Symp. Tech. Exhib. Electromagn. Compat, Zurich, pp.157-162, 1985.
    [18] Takamitsu Ito, Toshiaki Ueda, Hideto Watanabe, Toshihisa Funabashi and Akihiro Ametani, “Lightning Flashovers on 77-kV Systems: Observed Voltage Bias Effects and Analysis,” Power Delivery, IEEE Transactions on Vol.18, No.2, April 2003.
    [19] T. Yamada, A. Mochizuki, J. Sawada, E. Zaima, T. Kawamura, A. Ametani, M. Ishii, S. Kato, “Experimental Evaluation of a HUV Tower Model for Lightning Surge Analysis,” Power Delivery, IEEE Transactions on Vol.10, No.1, January 1995.
    [20] 趙海翔、王曉蓉,「風電機組的雷擊過電壓分析」,電網技術,第二十八卷,第四期,第27-30頁,2004年2月。
    [21] 王世榮,「應用脈衝電流法於電力電纜故障測距之研究」,國立台北科技大學碩士論文,民國95年。
    [22] 台灣電力公司,「配電技術資料(二):地下配電器材」,第二章,第7-10頁。
    [23] 范振理、楊金石、廖清榮、鄭強、王念中,“開關突波與鐵磁共振對彰工電廠開關場及變壓器設備之影響評估與預防對策研究”,綜合研究所高壓實驗室,民國94年。
    [24] 楊天皓,「電力開關場之鐵磁共振與開關突波分析」,國立台灣科技大學碩士論文,民國97年。
    [25] Asuda oh, Toshihisa Funabashi “Transient Analysis Wind Farm Suffered from Lightning, “IEEE Conference, Vol. 1, pp.202-206, September 2004.
    [26] W.D. Curtis, M. Thomas, Jr. and G.S. James, “How to Protect a Wind Turbine from Lightning” Nat. Aeronautics Space Admin., DOE/NASA 0007-1, NASA-CR-168229, September 1983.
    [27] N.D. Hatziargyriou, M.I .Lorentzou, I. Cotton and N. Jenkins “Transferred Overvoltages by Windfarm Grounding Systems,” The 8th International Conference on Harmonic and Quality of Power, Vol. 1, pp.342-347, 1998.
    [28] I. Cotton, “Windfarm Earthing,”IEE High Voltage Engineering Symposium, No. 461, August 1999.
    [29] Yasuda Yoh, Hayato Kobayashi and Toshihisa Funabashi, “Surge Analysis on Wind Farm at Winter Lightning Stroke,”28th International Conference on Lightning Protection, pp. 1557-1562.
    [30] Yasuda Yoh, Naoki Uno, Hayato Kobayashi, and Toshihisa Funabashi, “Surge Analysis on Wind Farm When Winter Lightning Strikes,”IEEE Transactions on Energy Conversion, 2007.
    [31] IEC 60076-11, “Power Transformers-Part 11: Dry-type transformers,” First edition, 2004.

    QR CODE