簡易檢索 / 詳目顯示

研究生: 鍾維苓
Wei-Ling Chung
論文名稱: 以離岸風力機系統專利探討知識流動與產業網絡
Exploring the Knowledge and Industry Network Development of Offshore Wind Turbine System Patents
指導教授: 何秀青
Mei HC Ho
口試委員: 劉顯仲
John S. Liu
王孔政
Kung-Jeng Wang
何秀青
Mei HC Ho
學位類別: 碩士
Master
系所名稱: 管理學院 - 科技管理研究所
Graduate Institute of Technology Management
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 120
中文關鍵詞: 可再生能源技術離岸風力機知識流動主路徑分析集群分析中介角色三螺旋理論
外文關鍵詞: Renewable energy technologies, Offshore wind turbine, Knowledge flow, Main Path Analysis, Edge-betweenness Analysis, Brokerage role, Triple helix theory
相關次數: 點閱:249下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著經濟與科技的快速發展,缺電成為了世界各國亟需解決的難題。石化資源不斷耗損,環境汙染、極端氣候的狀況亦愈發嚴重,尋找潔淨、環保的替代能源成為近年各國能源安全政策的核心目標之一,國際組織亦將可再生能源列入科技政策的核心。在眾多可再生能源類型中,風能因相對穩定、可靠且較容易被轉換利用,為各國企業所重視,成為技術研發與商業投資的重心,風電技術也在過去半世紀內逐步從陸域風電進展到離岸風電,並成為能源產業中的熱門技術領域。因此,本研究蒐集離岸風力機系統技術相關專利共4,459筆,以主路徑分析方法找出離岸風電的知識網絡結構、技術發展脈絡與領域發展的現況;以集群分析方法探討細部技術集群的數量、知識交流與發展狀況;最後透過中介角色分析探討跨國與跨機構類型網絡的特徵,尋找關鍵知識傳播者與其角色定位,進而驗證中介角色與競爭優勢之間是否存在關聯。
    研究結果顯示,首先,離岸風力機系統知識發展的關鍵路徑由美國、丹麥、德國、西班牙與日本所主導;整體而言,離岸風力機系統技術從基礎部件類技術,歷經變速系統、能源轉換率最佳化的階段,至近期發展包含浮體、浮空式離岸風電與氫能等新興技術,逐步實現離岸風電技術與產業的再創新。第二,從技術層面觀察,可發現離岸風力機系統領域涵蓋發電機、控制系統、能源與結構安裝四大類技術,不同類技術間的互動模式與密度主要取決於風機物理結構上的關聯。第三,跨國知識交流網絡中,美國企業(GE、Google、Exxon等)多為促進國內知識交流的角色,歐洲以及亞洲企業(Siemens Gamesa、Vestas、Enercon、Mitsubishi MHI、Samsung、Hitachi等)則更常擔任跨國知識橋梁;而在跨機構類型網絡中,產業內部的資訊交流多由企業主導,學研單位則負責促動產官學三方的互動,構成資源與知識的共享網絡,以更好地推動離岸風力機技術以及產業的發展。


    With the rapid development of economy and technology, the lack of electricity has become an urgent problem for all countries in the world to solve. With the continuous depletion of petrochemical resources, environmental pollution and extreme climate conditions becoming more and more serious, the search for clean, environmentally friendly alternative energy sources has become one of the core objectives of national energy security policies in recent years, and international organizations have included renewable energy in the core of their technology policies. Among the many types of renewable energy, wind energy is relatively stable, reliable, and easy to be converted and utilized, so it has become the focus of technology research and development and commercial investment in various countries. Therefore, this study collects 4,459 patents related to offshore wind turbine system technology, and uses the main path analysis method to find out the knowledge network structure, technology development pattern, and the current status of the field development of offshore wind power; uses the cluster analysis method to explore the number, knowledge exchange, and development status of small technology clusters; finally, uses the intermediary role analysis to explore the characteristics of cross-national and cross-institutional type networks, and searches for key knowledge disseminators and their roles. Finally, we explore the characteristics of cross-national and cross-institutional networks through intermediary role analysis to find out the key knowledge disseminators and their role positioning, and then verify whether there is a relationship between intermediary role and competitive advantage.
    The research results show that the key paths of offshore wind turbine system knowledge development are led by the United States, Denmark, Germany, Spain, and Japan. Overall, offshore wind turbine system technology has gone from basic component-based technology, through the stages of variable speed system and energy conversion rate optimization, to the recent development of emerging technologies including floating body, floating offshore wind power, and hydrogen energy, gradually realizing the re-innovation of offshore wind power technology and industry. From the technical level, it can be found that the offshore wind turbine system covers four major types of technologies: generator, control system, energy and structural installation. The interaction pattern and density between different types of technologies mainly depends on the physical structure of the wind turbine. In cross-national knowledge exchange networks, U.S. companies (GE, Google, Exxon, etc.) mostly promote the role of domestic knowledge exchange, while European and Asian companies (Siemens Gamesa, Vestas, Enercon, Mitsubishi MHI, Samsung, Hitachi, etc.) more often act as cross-national knowledge bridges; and in cross In the cross-institutional network, the information exchange within the industry is mostly led by enterprises, while the academic and research units are responsible for promoting the interaction between industry, government, and academia to form a network for sharing resources and knowledge to better promote the development of offshore wind turbine technology and industry.

    摘要 I ABSTRACT II 目錄 IV 圖目錄 VII 表目錄 IX 壹 緒論 1 1.1 研究背景與動機 1 1.2 研究問題 2 1.3 論文架構 3 貳 文獻回顧 4 2.1 國際能源政策動態與風能趨勢 4 2.1.1 國際能源三大發展目標 4 2.1.2 國際新與可再生能源(New and Renewable Energy)政策現況 6 2.2 風電技術之發展與產業現況 7 2.2.1 風電技術之崛起 7 2.2.2 風電產業鏈與風機系統類型 8 2.2.3 全球離岸風力機系統版圖之變遷 10 2.3 知識網絡與企業角色 12 2.3.1 網絡 12 2.3.2 知識累積的網絡觀點 13 2.3.3 知識網絡與利害關係人的互動影響 14 2.3.4 知識網絡中的中介角色 15 參 研究方法 19 3.1 研究流程 20 3.1.1 資料來源 20 3.1.2 研究範圍之界定 21 3.1.3 資料蒐集 21 3.1.4 資料清理 23 3.2 主路徑分析方法 24 3.2.1 資訊流量計算 25 3.2.2 路徑追蹤 27 3.3 集群分析方法 30 3.4 中介角色分析 32 肆 研究結果 33 4.1 敘述性統計 33 4.1.1 歷年專利申請趨勢 33 4.1.2 技術領域分析 35 4.1.3 國家別分析 37 4.1.4 主要專利權人統計 38 4.2 離岸風力機系統技術發展階段 39 4.2.1 技術發展三階段 41 4.2.2 小結 47 4.3 離岸風力機系統技術集群 51 4.3.1 六大技術集群 53 4.3.2 技術集群之互動 75 4.3.3 小結 78 4.4 知識傳播之中介角色 79 4.4.1 核心專利權人網絡 79 4.4.2 中介角色 83 4.4.3 小結 89 伍 結論與建議 90 5.1 離岸風力機技術的發展軌跡 90 5.2 技術網絡特徵與互動 92 5.3 知識互動的關鍵促動者 95 5.4 實務建議 96 5.4.1 全球離岸風電技術的再創新 96 5.4.2 知識中介角色作用的強化 97 5.5 研究限制與後續研究建議 98 參考文獻 100

    AlbertM.B., AveryD., NarinF., & McAllisterP. (1991). Direct validation of citation counts as indicators of industrially important patents. Research Policy, 251-259.
    AlleeVerna. (1999). The art and practice of being a revolutionary. Journal of Knowledge Management, 121-131.
    AreEndel. (1978). Wind energy conversion device. US Patent No. 4213057.
    BergerP.L., & LuckmannT. (1966). The Social Construction of Reality. New York: Doubleday & Company.
    BirgelJ.Warren, & HajecS.Chester. (1982). Windmill driven eddy current heater. US Patent No. 4421967.
    BlakeTimothy, RytonHaroldGeorge, MansirHassan, & HemingwayJamesNicholas. (2013). Wind energy system and method for using same. US Patent No. 9869299B2.
    BloombergNEF. (2022). Wind – 10 Predictions for 2022 Retrieved from https://about.bnef.com/blog/wind-10-predictions-for-2022/ (Jan 18, 2022)
    BrombachJohannes, MackensenIngo, & BuskerKai. (2018). Method for operating a wind farm. US Patent No. 11108238B2.
    C.Jung, D.Taubert, & D.Schindler. (2019). The temporal variability of global wind energy – Long-term trends and inter-annual variability. Energy Conversion and Management, 462-472.
    CadalzoConcepcion. (1977). Windmill mechanism. US Patent No. 4141215.
    CIP. (2022). CIP proposes to build a hydrogen island in the North Sea by 2030. Retrieved from https://www.cip.com/news-media/2022/cip-proposes-to-build-a-hydrogen-island-in-the-north-sea-by-2030/ (May 20, 2022)
    CREIA. (2015). 2014 China Wind Power Review.
    DiValentinD.Eugene, & HealyS.Henry. (1985). Torque control for a variable speed wind turbine. US Patent No. 4703189.
    DomanS.Glidden, KosM.Joseph, HarnerI.Kermit, DiValentinD.Eugene, & HealyS.Henry. (1985). Variable speed wind turbine. US Patent No. 4695736.
    DyeR.Thomas. (1998). Understanding Public Policy. Prentice Hall.
    FeddersenLorenz, SiebenthalerEckardt, & AndresenBjörn. (2004). Variable speed wind turbine having a passive grid side rectifier with scalar power control and dependent pitch control. US Patent No. 6856040B2.
    FeddersenLorenz, SiebenthalerEckardt, & AndresenBjörn. (2004). Variable speed wind turbine having a passive grid side rectifier with scalar power control and dependent pitch control. US Patent No. 6933625B2.
    Georg Moehlenkamp. (2006). Wind turbine for producing electrical power and a method of operating the same. US Patent No. 20070029802A1.
    GeorgeYanacopoulos. (1919). Wind-motor for air-pumps. US Patent No. 1369596.
    IchinoseMasaya, FutamiMotoo, & SakaiHiromitsu. (2007). Wind turbine generator system. US Patent No. 7355296B2.
    IEA. (2007). Renewables in global energy supply: An IEA facts sheet .
    IEA. (2022). Global Energy Review: CO2 Emissions in 2021. Retrieved from https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2 (June 25, 2023)
    InfoLink. (2021). 淨零排放目標下氫能的多元應用:離岸風電結合氫能. Retrieved from https://www.infolink-group.com/energy-article/tw/Producing-hydrogen-offshore-amid-global-race-to-zero-emissions (June 25, 2023)
    IPCC. (2018). Special Report: Global Warming of 1.5 ºC. Retrieved from https://www.ipcc.ch/sr15/ (June 25, 2023)
    JacobsonZ.Mark, & DelucchiA.Mark. (2011). Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy (39), 1154-1169.
    Jaffe, Trajtenberg & Henderson. (1993). Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations. The Quarterly Journal of Economics, 577–598.
    Joseph J. TallalJr., ChalkerJ.Daniel, Sanford E. WarrenJr., & FloresS.Edwin. (2001). System and building for generating electricity using wind power. US Patent No. 6765309B2.
    Kermit IHarmer, KosM.Joseph, & PatrickP.John. (1978). Wind turbine generator pitch control system. US Patent No. 4160170.
    LangYongqiang, ZargariRezaNavid, PandeMannish, & WuBin. (2008). Current source converter-based wind energy system. US Patent No. 8030791B2.
    LeydesdorffLoet, KushnirDuncan, & RafolsIsmael. (2014). Interactive Overlay Maps for US Patent (USPTO) Data Based on International Patent Classifications (IPC). Scientometrics 98(3), 1583-1599.
    Liu & Lu. (2012). An Integrated Approach for the Main Path Analysis: The Development of the Hirsch Index as an Example. Journal of the American Society for Information Science and Technology, 528-542.
    LiuS.John, LuY. Y.Louis, & HoH.C.Mei. (2019). A few notes on main path analysis. Scientometrics, 379–391.
    MirandaCarl LehnskovErik. (2018). Performance monitoring of a multi-rotor wind turbine system. US Patent No. 11187208B2.
    Newman & Girvan. (2004). Finding and evaluating community structure in networks. Physical review E.
    Newman. (2006). Modularity and community structure in networks. PANS, 8577– 8582.
    OECD. (2016). The Ocean Economy in 2030. Retrieved https://read.oecd-ilibrary.org/economics/the-ocean-economy-in-2030_9789264251724-en#page213 (June 25, 2023)
    OkadaYoshimi, & NagaokaSadao. (2015). Effects of early patent disclosure on knowledge dissemination: evidence from the pre-grant publication system introduced in the United States. IIR Working Paper, 15-12.
    Ørsted Taiwan. (2023). Retrieved from https://orsted.tw/en/about-us (June 25, 2023)
    SchönballWalter. (1975). Electric generator arrangement. US Patent No. 3974396.
    The Business Time. (2021). A monster wind turbine is upending an industry. Retrieved from https://www.businesstimes.com.sg/companies-markets/energy-commodities/monster-wind-turbine-upending-industry?fbclid=IwAR1vJU8LTiCJuGdQc4X2ewXnE6tVJRFSY9FVVIAw6-if7FMdn-L5GfRrnZ0 (June 25, 2023)
    TrajtenbergManuel. (1990). A Penny for Your Quotes: Patent Citations and the Value of Innovations. The RAND Journal of Economics, 172-187.
    UMass. (2023). Wind Energy Center Alumni. Retrieved from https://www.umass.edu/windenergy/about/history/alumni (June 25, 2023)
    Wasserman S. & Faust K. (1994). Social network analysis: Methods and applications.
    WertheimM.Max, & J.Richard. (1982). Wind turbine maximum power tracking device. US Patent No. 4525633.
    WiegelFTheodore, & StevensCKenneth. (2005). Traffic-driven wind generator. US Patent No. 7098553B2.
    WilkersonW.Alan. (1975). Geophysical energy source utilization circuit. US Patent No. 3946242.
    Wind Energy Pictures. (2013). Retrieved from http://xn--drmstrre-64ad.dk/wp-content/wind/miller/windpower%20web/en/pictures/lacour.htm (June 25, 2023)
    WindEurope. (2022). History of Europe's Wind Industry. Retrieved from https://windeurope.org/about-wind/history/ (June 25, 2023)
    WIPO. (1971). Summary of the Strasbourg Agreement Concerning the International Patent Classification (1971). Retrieved from https://www.wipo.int/treaties/en/classification/strasbourg/summary_strasbourg.html (June 25, 2023)
    今周刊。2022。從加速到整合 英國躍居「能源創新」焦點。檢自:https://www.businesstoday.com.tw/article/category/183025/post/202203300064/ (最後檢索日期:2023年6月25日)
    朱珮綺。2020。產業技術評析。淺談全球離岸風電發展關鍵趨勢。檢自:https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=333 (最後檢索日期:2023年6月25日)
    周孝信、鲁宗相、刘应梅、陈树勇。2014。中国未来电网的发展模式和关键技术。中国电机工程学报 34(29): 4999-5008。
    林育輝。2011。由聯邦巡迴上訴法院Avid案談美國專利申請之資訊揭露的義務人。專利師 4: 94-95。
    屏東縣政府綠能專案推動辦公室。2018。風力發電。檢自:https://pge.pthg.gov.tw/%E7%B6%A0%E8%83%BD%E4%BB%8B%E7%B4%B9/%E9%A2%A8%E5%8A%9B%E7%99%BC%E9%9B%BB (最後檢索日期:2023年6月25日)
    范晏儒、盧怡靜。2018。以三螺旋理論建構產學研合作創新模式與研究機構之新定位。科技法律透析 30(10): 27-50。
    張晉源。2019。美國專利並行IPC與CPC下的分類號差異研究。碩士論文。臺北:國立臺灣科技大學專利研究所。
    梁啟源、高銘志、鄭睿合、蕭富庭、周耘任、王素彎。2019。我國電業自由化「綠電先行」下再生能源電業競爭規範研究。公平交易季刊 28(2): 1-45。
    產業價值鏈資訊平臺。2023。風力發電產業鏈簡介。檢自:https://ic.tpex.org.tw/introduce.php?ic=AB20 (最後檢索日期:2023年6月25日)
    莊文忠。2003。政策體系與政策變遷之研究:停建核四政策個案分析。博士論文。臺北:國立政治大學公共行政研究所。
    陳錦城、劉瑞弘、張家銘、吳孟儒、彭致勛、林其光。2017。MW級風力機液壓系統性能改良案例分析。機械工業雜誌 391: 115-125。
    黃佳甯。2022。國際零排碳趨勢對臺灣產業的影響:從國際減碳評比報告來觀察。經濟前瞻 201: 29-32。
    經濟部智慧財產局。2016。我國綠能產業專利趨勢分析報告。檢自:https://topic.tipo.gov.tw/patents-tw/cp-750-608167-178c1-101.html (最後檢索日期:2023年6月25日)
    葉芳瑜。2018。預見2020年風力發電產業動態與趨勢。科技政策觀點 7: 1-8。
    劉國讚、柯正怡。2013。隱藏在專利件數背後的專利強度指標。專利師 13: 1-16。
    蔡信行。2004。能量的概念與轉換。科學發展 377: 69-73。
    蕭智宸。2002。專利說明書撰寫之我見。智慧財產權月刊 48: 7-8。
    顏君聿。2013。國際重點組織能源政策發展主軸觀測。檢自:https://km.twenergy.org.tw/Knowledge/knowledge_more?id=752 (最後檢索日期:2023年6月25日)

    無法下載圖示
    全文公開日期 2026/07/25 (校外網路)
    全文公開日期 2026/07/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE