簡易檢索 / 詳目顯示

研究生: 李文傑
Wun-Jie Li
論文名稱: 運轉狀態下風力發電機之氣動力負荷數值研究
Numerical Study on Aerodynamic Loading of Wind Turbine in Operation
指導教授: 趙修武
Shiu-Wu Chau
口試委員: 郭真祥
none
鍾年勉
none
林怡均
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 123
中文關鍵詞: 風力發電機氣動力特性計算空間尺寸紊流強度風速分布數值模擬
外文關鍵詞: Wind Profile, Computational Domain
相關次數: 點閱:284下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用數值方法計算在額定風速與額定轉速的運轉狀態下,2MW水平軸風力發電機之風機氣動力特性。本研究利用求解不可壓縮流場之連續方程式、動量方程式以及紊流模型以獲得風機周圍流場。本研究首先討論計算空間尺寸對風機流場與氣動力特性的影響,以決定風機流場計算所需的適當空間尺寸;接著討論流場入口位置之紊流強度對風機流場與氣動力特性的影響,以了解紊流強度與風機流場變化的相關性;最後討論流場入口位置之冪次律風速分布對風機流場與氣動力特性的影響,以了解風速分布與風機氣動力特性的相關性。本研究使用的計算區塊主要可分為兩大區塊,分別為包含風機葉片的轉動區塊以及其外部的流場區塊。本研究計算結果顯示,當計算空間入口位置與風機距離2倍轉子直徑,計算空間高度及寬度大於1.5倍轉子直徑以及計算空間出口位置與風機距離6倍轉子直徑時,風機的氣動力特性趨於定值,此時該值與計算空間幾何尺寸大小無關。改變入口位置之紊流強度,對於風機周圍流場與氣動力特性無顯著影響。增大入口位置風速分布的指數值會降低風機輸出功率大小。當指數值由0.1增大為0.5時,風機輸出功率則會減少5%。


    This study investigates the aerodynamic characteristic of a 2MW horizontal-axis wind turbine at the rated wind velocity and rated rotational speed via a numerical approach. The flow field around a single wind turbine is obtained by solving the continuity and momentum equations incorporated with a turbulence model, where an incompressible flow field is assumed. First, the influence of the size of computational domain on the flow field around a single wind turbine and its aerodynamic characteristics is studied to determine the adequate size of computational domain in the numerical simulation. Second, the effect of turbulence intensity at the flow inlet on the flow field around a single wind turbine and its aerodynamic characteristics is examined to disclose the dependence of flow characteristics on turbulence intensity. Finally, the flow field around a single wind turbine and its aerodynamic characteristics are calculated for different wind profiles specified at the flow inlet to reveal the correlation between the aerodynamic characteristics and the shape of wind profile. Two mesh blocks are employed in this study, where the rotating one to describe the rotor blades is embedded inside the stationary one defining the size of computational domain. The numerical results indicate that the aerodynamic characteristics become independent on the size of computational domain provided that the distance between the wind turbine and flow inlet is larger than two times of the rotor diameter, the distance between the wind turbine and the flow outlet is greater than six times of the rotor diameter, and the height and width of computational domain are not less than one and half of the rotor diameter. The variation of turbulence intensity at flow inlet yields very limited impact on the flow field and aerodynamic characteristics of wind turbine. The increase of the exponent of the wind profile at flow inlet leads to the decline of delivered power, where the growth of exponent from 0.1 to 0.5 results in a power reduction of 5%.

    符號表………………………………………………………………….……... VII 圖目錄………………………………………………………………….……... IX 表目錄………………………………………………………………….……... XVIII 第一章 緒論……………………………………………………………..…… 1 1-1 前言……………………………………………………………..…….. 1 1-2 文獻回顧…………………………………………………………..….. 3 1-3 IEC61400-1風機標準…………………………………………...……. 7 1-4 風速延高度方向分佈(Wind Profile) ……………………….……….. 8 1-5 各國風力規範規定之地況分類………………………………….… 10 1-6 風機等級與紊流強度…………………………………………….… 11 第二章 數值模型與數值方法………………………………………….……. 12 2-1 統御方程式……………………………………………………….…... 12 2-2 紊流模型……………………………………………………….……... 14 2-3 數值離散方法………………………………………………….……... 15 第三章 風機尺寸與計算參數………………………………………….……. 16 3-1 標的風機的幾何參數………………………………………………... 17 3-2 標的風機之運轉特性…………………………………….…………... 19 3-3 風機周圍流場之計算空間………………………………….………... 21 3-4 計算與邊界條件之設定…………………………………….………... 22 3-5 網格建立與獨立性分析…………………………………….………... 24 第四章 數值計算結果………………………………………………….……. 27 4-1 流場入流距離對風機氣動力特性的影響…………………………… 32 4-2流場出口距離對風機氣動力特性的影響…………………….……… 52 4-3 流場半寬對風機氣動力特性的影響………………………….……... 64 4-4 計算空間高度對風機氣動力特性的影響 ………………….………. 76 4-5 風機等級與紊流強度對風機的受力影響…………………….……... 91 4-6 冪次律風速分佈對風機的受力影響…………………………….…... 104 第五章 結論與未來工作.................................................................................. 118 5-1 結論……………………………………………………………….…... 118 5-2 未來工作……………………………………………………….……... 119 參考文獻……………………………………………………………….……... 120

    [1] “World Wind Energy Report 2011,” World Wind Energy Association, 2011.
    [2] 劉德順,「風起雲湧 風電來兮」,台電月刊,第583期,2011。
    [3] 羅際航,「具不同翼型葉片的水平式風力機之數值模擬」,台灣科技大學機械工程系碩士論文,2006。
    [4] 陳一成,「台灣風場評估及風力機可用性分析-以台中電廠為例」,中興大學機械工程學系碩士論文,2006。
    [5] 陳彥呈,「陣風效應對風力發電機在停機狀態下之氣動力數值模擬研究」,臺灣大學工程科學及海洋工程學系碩士論文,2011。
    [6] 周辰穎,「陣風效應對風力機發電量影響之實驗研究」,中央大學土木工程學系碩士論文,2006。
    [7] 許育誠,「風力發電機對環境風場影響之評估」,淡江大學土木工程系碩士論文,2007。
    [8] D. O. Yu, J. Y. You, and O. J. Kwon, “Numerical Investigation of Unsteady Aerodynamics of a Horizontal-Axis Wind Turbine Under Yawed Flow Conditions,” Wind Energy, Vol. 16, pp. 305-701, 2012.
    [9] 韓中合,李引,馬帥,「考慮三維旋轉效應風力機葉片氣動性能數值研究」,太陽能學報,第33卷,第7期,第1094-1099頁,2012。
    [10] 李媛,康順,范忠瑤,李杰,「全迎角風力機翼型氣動性數值分析」,太陽能學報,第33卷,第7期,第1106-1111頁,2012。
    [11] S. H. Li, Q. F. Kuang, W. P. Yue, and T. T. Guo, “Numerical Simulation of the 1.2MW Wind Turbine Flow-Field,” Advanced Materials Research, Vol. 383-390, pp. 2045-2050, 2011.
    [12] 王琦峰,陳伯君,安亦然,「大型風力機三維空氣動力學數值模擬」,空氣動力學學報,第29卷,第6期,第810-814頁,2011。
    [13] 吳元康,吳文欽,林輝政,「歐美國家小型風力發電機之相關標準、試驗、
    與認證之研究」,台電工程月刊,第748期,2011。
    [14] 陳宏義,「建置節約能源、再生能源與前瞻能源產業產品標準、檢測技術與驗證平台」,能源國家型科技計畫成果展暨成果發表會,2012。
    [15] J. S. Anagnostopoulos, and G. Bergeles, “A Numerical Model for Wind Field and Pollutant Concentration Calculations Over Complex Terrain,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 73, pp. 285-306, 1998.
    [16] U. Takanori, and O. Yuji “Numerical Simulation of Atmospheric Flow Over Complex Terrain,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 81, pp. 283-293, 1999.
    [17] H. G. Kim, V. C. Patel, and C. M. Lee, “Numerical Simulation of Wind Flow Over Hilly Terrain,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 87, pp. 45-60, 2000.
    [18] F. L. Yu, M. Akashi, M. Shuzo, Y. Hiroshi, and S. Taichi “Numerical Simulation of Flow Over Topographic Features by Revised k-ε Models,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 91, pp. 231-248, 2003.
    [19] 鄭啟明,羅元隆,「風力規範之標準地況分類與紊流邊界層特性研究」,中華民國建築學會「建築學報68期增刊(技術專刊)」,第103-120頁,2009。
    [20] C. H. Hu, and F. Wang, “Using a CFD Approach for the Study of Street-Level Winds in a Built-Uparea,” Building and Environment, Vol. 40, pp. 617-631, 2005.
    [21] STAR-CCM+ User Guide, Ver. 7.04.011, 2012.
    [22] “IEC Standard 61400-1 International Electrotechnical Commission 3rd,” IEC,2005.
    [23] E. S. Politis, P. K. Chaviaropoulos, “Micrositing and classification of wind turbines in complex terrain,” Wind Energy Section Centre of Renewable Energy Sources, 2008.
    [24] 牛山泉,「基礎風力能源」,國立澎湖科技大學,2009。
    [25] “Minimum Design Loads for Buildings and Other Structures,” American Society of Civil Engineers, 2002.
    [26] “AIJ Recommendation for Loads on Buildings,” Architectural Institute of Japan, 1996.
    [27] “Structural Design Actions- Wind Actions,” Standard Australia, 2002.
    [28] “National Research Council of Canada,” Supplement to the National Building Code of Canada, 1990.
    [29] “Guidelines for the Evaluation of the Response of Occupants of Fixed Structures, especially buildings and offshore structures, to low-frequency horizontal motion (0.063 to 1 Hz),” International Standard Organization, 1984.
    [30] 「建築物耐震設計規範及解說」,內政部營建署,2005。
    [31] B. E. Launder, and D. B. Spalding, “The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, 1974.
    [32] P. K. Khosla, and S. G. Rubin, “A Diagonally Dominant Second-Order Accurate Implicit Scheme,” Computers & Fluids, Vol. 2, pp. 207-209, 1974.
    [33] C. M. Rhie, and W. L. Chow, “Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation,” The American Institute of Aeronautics and Astronautics Journal, Vol. 21, No. 11, pp. 1525-1532, 1983.
    [34] S. V. Pantankar, “Numerical Heat Transfer and Fluid Flow,” Taylor & Francis Group, 1980.
    [35] “Technical Description of the Z72 Wind Turbine,” HARAKOSAN, 2009.
    [36] L. F. Richardson, “The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam,” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, Vol. 210, pp. 307-357, 1910.

    QR CODE