簡易檢索 / 詳目顯示

研究生: 楊昇霖
Sheng-Lin Yang
論文名稱: 風力發電系統之暫態分析
Study on the transient phenomena of wind generation
指導教授: 陳在相
Tsai-Hsiang, Chen
口試委員: 蕭弘清
Hung-Ching, Hsiao
蕭瑛東
Ying-Tung Hsiao
蒲冠志
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 96
中文關鍵詞: 風力發電雙饋式風力發電機
外文關鍵詞: wind power, doubly-fed
相關次數: 點閱:235下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主要目的在探討風力發電之暫態特性,研究內容包括風力發電系統併網前後之暫態特性模擬與故障電流變動分析,針對不同風機併網位置與數量進行模擬與探討。本論文主要以MATLAB/Simulink 模擬軟體建立分析所需之配電範例系統,再應用不同之控制策略探討風機對饋線電壓及故障電流等的影響。模擬過程中,風力發電機採用變動之風速,以資探討風力發電系統在正常運轉與系統故障各情況下的暫態特性,模擬結果可作為評估風力發電機併網可能對系統造成衝擊之參考。


    The major purpose of this thesis is to analyze the transient phenomena of wind generation while interconnection with a distribution network. The major research focuses include the transient phenomena analysis and fault level evaluation, the impacts of interconnection locations and capacities of the wind generations on a distribution feeder were evaluated as well. Two wind generation models and a full-scale distribution network model were developed by using MATLAB/Simulink. Based on the developed models, different control strategies were applied to investigate the impacts of various types of wind generations on the voltage profiles and fault level variations along a distribution feeder. Time-varying wind power was applied for simulating the transient behavior of a wind farm under normal and abnormal operating situations. The simulation results show a considerable impact of the distributed wind generation on the distribution networks.

    中文摘要 I 英文摘要 II 誌 謝 III 目 錄 IV 圖表索引 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法與步驟 2 1.3 研究貢獻 3 1.4 論文架構 3 第二章 國內外風力發電之應用與研究現況 4 2.1 前言 4 2.2 國內、外風力發電之研究現況 4 2.2.1 國外風力發電發展現況 5 2.2.2 我國風力發電發展現況 7 2.3 風力發電相關併聯規範探討 8 2.4 結語 11 第三章 風力發電機系統模型建構 12 3.1 前言 12 3.2 商用套裝軟體內建風機模型比較 12 3.3 風速模型 18 3.4 雙饋式風力發電機 19 3.5 感應型風力發電機 21 3.5.1 感應型發電機模型 22 3.5.2 風力發電系統整合模型 22 3.6 風機特性模擬 24 3.7 結語 26 第四章 風力發電機併網運轉之探討與分析 28 4.1 前言 28 4.2 範例系統單線圖及參數設定 29 4.3 風機併網之穩態特性分析 31 4.3.1 風機於範例饋線A10#88處併網 31 4.3.1.1 風機併網前後電壓變動分析 31 4.3.1.2 風機併網前後電流變動分析 34 4.3.1.3 風機併網前後功率變動分析 36 4.3.2 風機於主變二次側匯流排併網 38 4.3.2.1 風機併網前後電壓變動分析 38 4.3.2.3 風機併網前後電流變動分析 40 4.3.2.4 風機併網前後功率變動分析 41 4.3.3 風機於饋線末端併網 43 4.3.3.1 風機併網前後電壓變動分析 44 4.3.3.2 風機併網前後電流變動分析 46 4.3.3.3 風機併網前後功率變動分析 47 4.4 故障電流分析 49 4.5 計畫性的孤島運轉 51 4.6 結語 56 第五章 雙饋式風力發電系統控制策略對暫態電壓變動之影響研究 58 5.1 前言 58 5.2 雙饋式風機併網暫態研究 59 5.2.1 雙饋式風機併網後以不同方式控制併網點電壓對饋線電壓之影響 59 5.2.2 雙饋式風機併網後風速對應旋角控制 70 5.2.2.1 風速變動14m/s到30m/s 71 5.2.2.2 風速變動14m/s到0m/s 73 5.2.3 風機併聯後加入電容器的影響 75 5.2.3.1 年度重載下電容器在風機併接點切入 76 5.2.3.2 年度重載下電容器在饋線末端切入 77 5.2.3.3 年度輕載下電容器在風機併接點切入 79 5.2.3.4 年度輕載下電容器在饋線末端切入 80 5.3 故障暫態分析 82 5.3.1 饋線前端發生故障 82 5.3.2 風機併接點發生故障 84 5.3.3 饋線末端發生故障 87 5.4 結語 89 第六章 結論與未來研究方向 91 6.1 結論 91 6.2 未來研究方向 92 參考文獻 93 作者簡介 96

    [1]European Wind Energy Association, Wind Force 12,“A Blueprint to Achieve 12% of the World’s Electricity from Wind Power by 2020”, pp. 28-60, 2004
    [2]經濟部工業局,聯合國氣候變化網要公約進展,網址:http://proj.moeaidb.gov.tw/eta/greenhouse/GH-010.htm#3-5
    [3]GWEA, “Global wind power continues ezpansion,” Avaliable :http://www.gwec.net/
    [4]風力發電示範應用展示系統網站,網址:http://140.96.175.50/Power/start.aspx
    [5]經濟部能源局,「台灣風力發電的現況與展望」, 2005年2月
    [6]經濟部能源局,「風力發電V.S.環境生態」,2005年4月
    [7]IEEE Std. 1547, Stand for Interconnecting Distributed Resources with Electric Power Systems, IEEE SCC21, 2003.
    [8]台灣電力公司再生能源發電系統倂聯技術要點,台灣電力公司,2002年
    [9]European Commission published,“External Costs, Research results on socio-environmental damages due to electricity and transport,” 2003
    [10]Enron Wind Energy,“A New Generation of Power. Enron Wind 1.5 MW Series,”Technical Description and Specifications.
    [11]台南縣北門鄉風力發電併聯計畫及系統衝擊分析報告,工業技術研究院 能源與資源研究所,2003年
    附錄一 Vestas V66 1.75MW 風機電力品質量測報告及技術參數
    附錄二 Vestas V66 1.75MW 風機提供之短路電流
    [12]羅天賜,劉益華,「分散型電源與既有電網互聯技術之研究」,電機月刊,第十三卷第五期,民國九十二年五月
    [13]鍾戊興,卓源鴻,「風力發電機的分析與計算」,電機月刊,第十三卷第八期,民國九十二年八月
    [14]J.B.Ekanayake, L. Holdsworth, Wu. XueGuang and N. Jenkins, “Dynamic modeling of doubly fed induction generator wind turbines, ” IEEE transactions on power systems, vol. 18, pp. 803-809, 2003
    [15]S. Muller, M. Deicke and R.W. De Doncker, “Doubly fed induction generator systems for wind turbines, ” industry applications magazine, vol. 8, pp. 26-33, 2002
    [16]S.R. Chellapilla and B.H. Chowdhury, “A dynamic model of induction generators for wind power studies, ” power engineering society general meetion, vol. 4, pp. 13-17, 2004
    [17]L. Holdsworth, X.G. Wu, B.J. Ekanayake and N. Jenkins, “Comparison of fixed speed and doubly-fed induction wind turbines during power system disturbances, ” IEE proceedings on transmission and distribution, vol. 150, pp. 343-352, 2003
    [18]X. Ding, P.A. Crossley and D.J. Morrow, “Protection and control of networks with distributed generators capable of operating in islanded mode, ” IEE international conference on developments in power system protection, vol. 2, pp. 567-570, 2004
    [19]G.Lwanski and W.Koczara, “Island operation of the variable speed induction generator, ”power electronics and motion control conference, vol. 2, pp. 896-901, 2004
    [20]M.Yamamoto and O. Motoyoshi, “Active and reactive power control for doubly-fed wound rotor induction generator, ” IEEE transactions on power electronics, vol. 6, pp. 624-629, 1991
    [21]B. Rabelo and W. Hofmann, “optimal active and reactive power control with the doubly-fed induction generator in the MW-class wind turbines, ” IEEE international conference on proceedings, vol. 1, pp. 53-58, 2001
    [22]A. Tapia, G. Tapia, J.X. Ostoiaza, J.R. Saenz, R. Criado and J.L. Berasategui, “Reactive power control of a wind farm made up with doubly fed induction generators.I, ” power tech proceedings, vol. 4, pp. 6, 2001
    [23]A. Tapia, G. Tapia, J.X. Ostoiaza, J.R. Saenz, R. Criado and J.L. Berasategui, “Reactive power control of a wind farm made up with doubly fed induction generators.II, ” power tech proceedings, vol. 4, pp. 6, 2001
    [24]T. Brekken and N. Mohan, “A novel doubly-fed induction wind generator control scheme for reactive power control and torque pulsation compensation under unbalanced grid voltage conditions, ” power electronics specialist conference, vol. 2, pp. 760-764, 2003
    [25]M. Machmoum, F. Poitiers, C. Darengosse and A. Queric, “Dynamic performances of a doubly-fed induction machine for a variable-speed wind energy generation, ” international conference on proceedings, vol. 4, pp. 13-17, 2002
    [26]A. Tapia, G. Tapia, J.X. Ostoiaza and J.R. Saenz, “Modeling and control of a wind turbine driven doubly fed induction generator, ” IEEEtransactions on energy conversion, vol. 18, pp. 194-204, 2003
    [27]Xie. Bing, B. Fox and D. Flynn, “study of fault ride-through for DFIG based wind turbines, ” IEEE international conference on proceedings, vol. 1, pp. 411-416, 2004
    [28]M.S. Vicatos and J.A. Tegopoulos, “Transient state analysis of a doubly-fed induction generator under three phase short circuit, ” IEEE transactions on energy conversion vol. 6, pp. 62-68, 1991
    [29]T. Sun, Z. Chen and F. Blaabjerg, “Voltage recovery of grid connected wind turbines with DFIG after a short circuit fault, ” power electronics specialists conference, vol. 3, pp. 20-25, 2004

    QR CODE