簡易檢索 / 詳目顯示

研究生: 林子堯
ZIH-YAO LIN
論文名稱: 微米及奈米點陣膜之磁性研究
Investigation of micron/nano Magnetic NiFe dot array film
指導教授: 鄭偉鈞
Wei-chun Cheng
任盛源
Shien-Uang Jen
口試委員: 陳勝吉
Sheng-Chi Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 106
中文關鍵詞: 點陣奈米針斜鍍
外文關鍵詞: nanodot, nanowire, oblique
相關次數: 點閱:160下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之一是利用NiFe鍍料以熱蒸鍍之方式,將薄膜鍍在170 μm厚之玻璃基板上,使成長為單層、厚度為100 nm之連續薄膜。 再利用微影蝕刻技術將連續薄膜製作成半徑為20μm之圓(或邊長為40 μm之方形)、數量為50x50之點陣,再改變點與點之間距,以研究其磁特性。 而研究之二,是利用NiFe鍍料以熱蒸鍍之方式,將薄膜鍍在具奈米針陣列之單晶矽基板上。熱蒸鍍時利用改變罩板角度(斜鍍、與水平方向夾角為20o、30 o 、40o)以及控制薄膜厚度(100 nm、50 nm),目的是使奈米針上之薄膜能粒粒分明(使其不連續),每粒尺寸約50 nm並進行後續分析。
    由震動式磁力計(VSM)量測出之磁滯曲線發現,點陣結構中,點與點之距離越靠近(點陣密度越高),因偶極場作用力(dipolar interaction)之關係,其方正比(squareness ratio;SQR)會越高。而另一奈米針之研究,由震動式磁力計(VSM)量測出之磁滯曲線發現,同一製程參數下,鍍在奈米針狀結構矽基板與鍍在平面矽基板上之NiFe膜,奈米針狀結構矽基板之矯頑磁場明顯高於平面矽基板,而方正比部分則是平面矽基板明顯高於奈米針狀結構矽基板。在奈米針狀結構矽基板中,又以罩板角度(與水平方向夾角)為40o (最傾斜鍍)之方正比(squareness ratio;SQR)最大。


    In project (A), NiFe continuous films were deposited onto glass substrate by thermal evaporation method film with thickness 100 nm. By using Lithography and etching technique, the NiFe films were then manufactured into 50X50 dots:circle with 20 μm radius (or squares with 40 μm each side). Then the magnetic properties of dot array films were studied by changing the separation between the neighboring dots.In another project, project (B), NiFe films were deposited on Si substrates containing nano-wires. In order to make the films also forming nanodot array and for further analysis, we changed the angle of mask during evaporation and controlled the thickness of the films.
    We used VSM to measure the Hysteresis Loop of dot array film. We found that when the separation between dots in dot array structure are decreased, the squareness ratio are increased due to dipolar interaction. In the other project, we used VSM to measure the Hysteresis Loop of film on nano-wires. We discovered that under the same procedure, the coercive field of “nano-wired NiFe films” (films on nano-wires) are significantly higher than “plane NiFe films” (plane films),and SQR are “plane NiFe films” significantly higher than nano-wired NiFe films. We also compared nano-wires with different oblique angles, and found that the squareness ratio are the highest in the 40o angle case.

    表目錄 6 圖目錄 7 第一章 簡 介 10 第二章 實驗原理 11 2.1薄膜成長 11 2.1.1薄膜成長機制 11 2.2 磁性原理介紹 13 2.2.1磁性物質分類 14 第三章 實驗儀器與原理 24 3.1 真空原理 24 3.1.1 真空定義[12] 24 3.1.2 真空材料與封合[18.19] 24 3.2高溫蒸鍍系統 26 3.3 微影蝕刻 27 3.3.1微影(Lithography) [20] 27 3.3.2蝕刻(Etching) [21] 29 3.4樣品振動磁力量測儀(Vibrating Sample Magnetometer, VSM) 30 3.5原子力顯微鏡 31 3.6磁力顯微鏡(magnetic force microscope,MFM) 32 3.7掃描式電子顯微鏡 33 第四章 實驗流程與方法 34 4.1實驗流程 34 4.2研究一:鎳鐵合金點陣結構於玻璃基板上之製作與特性研究 34 4.2.1熱蒸鍍機操作步驟 34 4.2.2微影蝕刻 36 4.2.3振動樣品磁力計(VSM)操作步驟 37 4.2.4利用光學顯微鏡配合外加磁場,觀察其磁區變化 38 4.3研究二:鎳鐵合金於具有奈米針狀結構之矽基板上之製作與特性研究 40 4.3.1熱蒸鍍機操作步驟 40 4.3.2. 樣品振動磁力計(VSM)操作步驟 40 4.3.3原子力顯微鏡操作步驟 41 4.3.4磁力顯微鏡(MFM)操作步驟 42 第五章 結果與討論 46 5.1研究一:鎳鐵合金點陣結構於玻璃基板上之製作與特性研究 46 5.1.1點陣間距對矯頑磁力的影響 46 5.1.2 點陣間距對方正比(SQR)的影響 47 5.1.3磁場與易軸之夾角對方正比(SQR)的影響 48 5.1.4不同磁場下各陣列之磁區變化 50 5.2研究二:鎳鐵合金於具有奈米針狀結構之矽基板上之製作與特性研究 81 5.2.1基板結構對於FeNi合金矯頑磁力(Hc)之影響 81 5.2.2磁場與膜面法向量夾角對矯頑磁力(Hc)之影響 84 5.2.3熱蒸鍍之罩板角度對於方正比(SQR)之影響 85 5.2.4磁場與膜面法向量夾角對方正比(SQR)之影響 86 5.2.5基板結構對於FeNi合金方正比(SQR)之影響 86 5.2.6薄膜(於奈米針矽基板)厚度對於矯頑磁力(Hc)之影響 89 5.2.7利用矯頑磁力判斷粒子仍為多磁區 91 5.2.8不同磁場下觀察鍍於奈米針結構矽基板之表面形貌與磁區變化 92 第六章 結 論 104 參考文獻 105

    [1].鄭振東,“實用磁性材料”,全華科技圖書股份有限公司(1999)。
    [2].近角聰信著,張煦、李學養譯,“磁性物理學”,聯經出版(1982)。
    [3].劉國雄、林樹均、李勝隆、鄭晃忠、葉鈞蔚,“機械材料學”,全華科技圖書股份有限公司(1996)。
    [4].Cullen J R, A. E. Clark, M. Wun-Fogle,et al. Magnetoelasticity of Fe-Ga and Fe-Al alloys[J]. J Magn Magn Mater, 2001, 226-230:948 [5].William F.Smith著,李春穎、許煙明、陳忠仁譯,“材料科學與工程”,高立圖書有限公司(1994)。
    [6].S. U. Jen, T. L. Tsai, P. C. Kuo, W. L. Chi, and W. C. Cheng, “Magnetostrictive and structural properties of FeCoGa films”, Journal of Applied Physics, 2010, 107, 0139141-4.
    [7].陳淑貞,“鈷薄膜在矽(100)表面的磁性觀測”,國立台灣師範大學物理所碩士論文(1999)。
    [8].陳宿惠,“銀─鈷超薄膜在鉑(111)表面的磁性探討”,國立台灣師範大學物理所碩士論文(1999)。
    [9].王坤池,“超高真空中在Ge(111)面上成長Co超薄膜之退火效應及磁性現象研究”,國立台灣科技大學機研所碩士論文(2001)。
    [10].陳元宗,國立清華大學材料科學工程研究所博士論文 (2006) 。
    [11].L. Dai, J. Cullen, M. Wuttig, T.A. Lograsso, and E. Quandt, J. Appl. Phys. 93, 8627 (2003).
    [12].A.E.Clark, Ferromagnetic Materials, edited by E.P. Wolfarth, Vol.1 P.532 (1980).
    [13].A.E.Clark, et al., AIP Conf. Proc., 10 749 (1973).
    [14].高瞻自然科學教學資源平台-國立臺灣師範大學物理系李聖尉碩士生/國立臺灣師範大學物理系蔡志申教授責任編輯
    [15].蘇清森,“真空技術”,東華書局(1992)。
    [16].“真空技術與應用”,行政院國家科學委員會精密儀器發展中心
    [17].于劍平/微機電系統概論
    [18].網路資料:第七章蝕刻技術
    [19].Model 7407 Vibrating Sample Magnetometer user’s manual, Lake Shore.
    [20].G. Binnig, C. F. Quate, Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).
    [21].V. J. Morris, A. R. Kirby, A. P. Gunning, Atomic Force Microscopy for Biologists, Imperial College Press: London (1999).
    [22].網路資料:奈米薄膜實驗室-掃描式探針顯微鏡

    QR CODE