簡易檢索 / 詳目顯示

研究生: 李采芸
Tsai-Yun Lee
論文名稱: 開發具活性氧應答之泊洛沙姆水膠於藥物遞送之應用
Development of reactive oxygen species-responsive poloxamer-based hydrogels for drug delivery applications
指導教授: 鄭詠馨
Yung-Hsin Cheng
口試委員: 蕭育生
Yu-Sheng Hsiao
游佳欣
Jia-shing Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 125
中文關鍵詞: 藥物緩釋系統氧化壓力Pluronic F127溫敏性凝膠
外文關鍵詞: drug sustained-release system, oxidative stress, Pluronic F127, thermosensitive hydrogel
相關次數: 點閱:380下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 心肌梗塞 (Myocardial infarction) 是一種急性且嚴重的心臟疾病,原因在於冠狀動脈阻塞使氧氣和養分無法輸送到心肌細胞,將導致心臟組織永久受損壞死。經治療後血液會重新流至缺血的細胞,但再灌注治療後的氧化壓力會誘使發炎因子產生,使得心肌受損。因此,針對缺血再灌注損傷的預防及治療成為心肌梗塞治療中不可忽視的存在。現今的治療方式包含再灌注前的預處理及再灌注後的治療,如缺血預處理、基因或細胞策略以及藥物治療等。然而,預處理的前置準備時間較長可能耽誤治療,基因或細胞策略是仍在實驗室內的研究,藥物投遞則有生物利用度低的問題。
    N-乙醯半胱胺酸 (N-acetylcysteine, NAC) 的抗氧化能力一直備受矚目,同時作為穀胱甘肽 (Glutathione, GSH) 的前驅物,NAC 可以補充 GSH 在體內的濃度,增強人體的解毒能力;而泊洛沙姆 (Pluronic F127, PF127) 為一種兩親性的高分子材料,大量研究證實 PF127 具有極佳的生物相容性且為良好的藥物載體。在本研究中製備同時具備溫敏性以及氧化應答能力的苯硼酸酯泊洛沙姆共聚雙響應水凝膠 (PBAP-PF127) 並載入藥物,雙響應水膠能透過注射到達人體內,在體溫下凝膠,並於氧化壓力的疾病環境下,緩慢且持續釋放藥物以達到更好的治療效果。
    本研究以 4-(Hydroxymethyl)phenylboronic acid pinacol ester (PBAP)、1,1'-Carbonyldiimidazole 及 PF127 製備 PBAP-PF127 高分子材料,利用傅立葉轉換紅外光譜、核磁共振與熱重分析儀分析材料改質前後的特徵峰及熱裂解溫度變化,將高分子配製成 20 wt% 水膠後,進一步評估雙響應水膠的性質,包含凝膠溫度、水膠形貌、溶脹與降解特性及對細胞的安全性,如水膠萃取液之毒性、滲透壓,確認水膠適用性後載入 NAC,評估藥物緩釋的效果。
    後續以過氧化氫 (Hydrogen peroxide) 誘導 H9c2 大鼠心肌細胞產生氧化壓力損傷,並加入載有藥物之 PBAP-PF127 水膠進行療效評估,結果顯示雙響應水凝膠能降低細胞凋亡程度與發炎因子,進一步提升 H9c2 的存活率。
    綜上所述,本研究開發之 PBAP-PF127 水膠應用於心血管疾病的治療應具一定的潛力。


    Myocardial infarction is an acute and severe heart disease caused by blockage of the coronary arteries that prevents oxygen and nutrients from being delivered to the myocardial cells, resulting in permanent damage to the heart tissue and death. After treatment, blood will flow back to the ischemic cells, but oxidative stress after reperfusion therapy can produce inflammatory factors that can damage the myocardium. Therefore, the prevention and treatment of ischemia-reperfusion injury have become integral to myocardial infarction treatment. Current treatment modalities include pre-treatment before reperfusion and post-reperfusion therapy, such as ischemic preconditioning, genetic or cellular strategies, and pharmacological therapy. However, pretreatment has a long lead time and may delay treatment, genetic and cellular strategies are still in the laboratory, and drug delivery has a low bioavailability problem.
    N-acetylcysteine (NAC) has been noted for its antioxidant capacity. As a precursor of glutathione (GSH), NAC can replenish the concentration of GSH in the body and enhance the detoxification ability of the body. Pluronic F127 (PF127) is an amphiphilic polymer, and numerous studies have demonstrated that PF127 has biocompatibility and can be a drug carrier. In this study, a dual-response hydrogel (PBAP-PF127) with both temperature-sensitive and oxidative response capabilities was prepared and loaded with the drugs. The dual-response hydrogel can be injected into the body, gel at body temperature, and slowly and continuously release the drugs under oxidative stress conditions to achieve better therapeutic effects.
    In this study, PBAP-PF127 polymers were prepared by 4-(hydroxymethyl)phenylboronic acid pinacol ester (PBAP), 1,1'-carbonyldiimidazole and PF127, and the characteristic peaks and thermal decomposition temperature changes were analyzed by Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and thermogravimetric analysis. After the polymer was prepared into 20 wt% hydrogels, the properties of the dual-response hydrogel were further evaluated, including gelation temperature, hydrogel morphology, swelling and degradation characteristics, safety to cells, such as toxicity and osmolality of the hydrogel extract. After confirming the suitability of the hydrogel, NAC was loaded into the hydrogel to evaluate the in-vitro drug release profile.
    Subsequently, oxidative stress damage was induced by hydrogen peroxide in H9c2 rat cardiomyocytes, and the efficacy was evaluated by adding PBAP-PF127 hydrogel loaded with the drug. The results showed that the dual-response hydrogel reduced apoptosis and inflammatory factors in the oxidative environment, further enhancing the survival rate of H9c2.
    In summary, the PBAP-PF127 hydrogel developed in this study should have potential application in the treatment of cardiovascular diseases.

    摘要 I Abstract II 誌謝 IV 目錄 IV 圖目錄 VIII 表目錄 XI 第一章 緒論 1 (一) 研究背景 1 (二) 研究動機與目的 1 第二章 文獻回顧 3 (一) 疾病成因和現行治療方式 3 1. 缺血性心肌受損與再灌注損傷成因 3 2. 現行治療方式 8 (二) 活性氧類和氧化壓力 12 (三) N-乙醯半胱胺酸 16 (四) 溫敏性水膠 20 1. 負溫度敏感型水膠 22 2. 溫敏性水膠藥物釋放機制 26 (五) 活性氧應答水膠 27 1. 含硫醚水膠 28 2. 含硒水膠 28 3. 含脯氨酸水膠 29 4. 含苯硼酸/苯硼酸酯水膠 30 第三章 實驗材料與方法 32 (一) 實驗藥品 32 (二) 實驗儀器 34 (三) 實驗流程 36 (四) H9c2 大鼠心室心肌細胞培養 37 (五) 雙響應 Pluronic F127 高分子製備 39 1. 苯硼酸酯接枝 Pluronic F127 合成 39 2. 傅立葉轉換紅外線光譜測定 41 3. 核磁共振分析 41 4. 熱重分析 42 (六) 雙響應水膠 Pluronic F127 製備 43 1. 水膠製備 43 2. 評估水膠凝膠特性 43 3. 水膠形貌 43 4. 水膠氧化應答能力測定 44 5. 水膠流變性質 44 6. 滲透壓測試 45 7. 微胞尺寸 45 8. 微胞形貌觀察 45 9. 水膠降解 46 10. 水膠溶脹 46 11. 水膠毒性測試 46 12. 細胞存活率分析 47 (七) N-乙醯半胱胺酸對 H9c2 細胞安全濃度 48 (八) 體外藥物釋放 49 (九) 雙響應水膠在氧化壓力下對 H9c2 之治療 50 1. 建立以 H2O2 誘導 H9c2 損傷之體外模型 50 2. 水膠對損傷後細胞之治療效果 50 (十) 統計分析方法 52 第四章 結果與討論 53 (一) 雙響應 Pluronic F127 高分子之鑑定 53 1. 傅立葉轉換紅外線光譜測定 53 2. 核磁共振分析 57 3. 熱重分析 62 (二) 雙響應水膠 Pluronic F127 性質之鑑定 67 1. 水膠凝膠性質 67 2. 水膠形貌觀察 68 3. 水膠氧化應答能力 70 4. 水膠流變性質 71 5. 滲透壓測試 75 6. 微胞尺寸 75 7. 微胞形貌 77 8. 水膠降解 79 9. 水膠溶脹 82 10. 水膠毒性 85 (三) N-乙醯半胱胺酸對 H9c2 細胞安全濃度 86 (四) 體外藥物釋放 87 (五) 雙響應水膠在氧化壓力下對 H9c2 細胞的治療 90 1. 氧化模型的建立 90 2. 水膠對損傷後細胞之治療效果 91 第五章 結論 97 參考文獻 99

    [1] Lu, L., Liu, M., Sun, R., Zheng, Y., & Zhang, P. (2015). Myocardial infarction: symptoms and treatments. Cell biochemistry and biophysics, 72, 865-867.
    [2] Tsao, C. W., Aday, A. W., Almarzooq, Z. I., Alonso, A., Beaton, A. Z., Bittencourt, M. S., ... & American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. (2022). Heart disease and stroke statistics–2022 update: a report from the American Heart Association. Circulation, 145(8), e153-e639.
    [3] Alzahrani, T., Pena, I., Temesgen, N., & Glantz, S. A. (2018). Association between electronic cigarette use and myocardial infarction. American journal of preventive medicine, 55(4), 455-461.
    [4] Saleh, M., & Ambrose, J. A. (2018). Understanding myocardial infarction. F1000Research, 7.
    [5] Virani, S. S., Alonso, A., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W., Carson, A. P., ... & American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. (2020). Heart disease and stroke statistics–2020 update: a report from the American Heart Association. Circulation, 141(9), e139-e596.
    [6] Thygesen, K., Alpert, J. S., Jaffe, A. S., Chaitman, B. R., Bax, J. J., Morrow, D. A., ... & Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. (2018). Fourth universal definition of myocardial infarction (2018). Circulation, 138(20), e618-e651.
    [7] Lim, B. K., Shin, J. O., Choe, S. C., Choi, S. W., Jeong, J. O., Seong, I. W., ... & Jeon, E. S. (2005). Myocardial injury occurs earlier than myocardial inflammation in acute experimental viral myocarditis. Experimental & Molecular Medicine, 37(1), 51-57.
    [8] Liu, C., Liu, Y., Chen, H., Yang, X., Lu, C., Wang, L., & Lu, J. (2023). Myocardial injury: where inflammation and autophagy meet. Burns & Trauma, 11, tkac062.
    [9] Li, B., Gao, X., Wang, W., Zhu, B., & Xiao, Q. (2022). Effect of early intervention on short‐term prognosis of patients with myocardial injury induced by acute carbon monoxide poisoning. ESC heart failure, 9(2), 1090-1097.
    [10] Lala, A., Johnson, K. W., Januzzi, J. L., Russak, A. J., Paranjpe, I., Richter, F., ... & Mount Sinai COVID Informatics Center. (2020). Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection. Journal of the American college of cardiology, 76(5), 533-546.
    [11] Lin, L., Zhang, M., Yan, R., Shan, H., Diao, J., & Wei, J. (2017). Inhibition of Drp1 attenuates mitochondrial damage and myocardial injury in Coxsackievirus B3 induced myocarditis. Biochemical and biophysical research communications, 484(3), 550-556.
    [12] Maxwell, S. R., & Lip, G. Y. (1997). Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options. International journal of cardiology, 58(2), 95-117.
    [13] Granger, D. N., & Kvietys, P. R. (2015). Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox biology, 6, 524-551.
    [14] Perrelli, M. G., Pagliaro, P., & Penna, C. (2011). Ischemia/reperfusion injury and cardioprotective mechanisms: role of mitochondria and reactive oxygen species. World journal of cardiology, 3(6), 186.
    [15] Collard, C. D., & Gelman, S. (2001). Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. The Journal of the American Society of Anesthesiologists, 94(6), 1133-1138.
    [16] Pantke, U., Volk, T., Schmutzler, M., Kox, W. J., Sitte, N., & Grune, T. (1999). Oxidized proteins as a marker of oxidative stress during coronary heart surgery. Free Radical Biology and Medicine, 27(9-10), 1080-1086.
    [17] Masztalerz, M., Włodarczyk, Z., Czuczejko, J., Słupski, M., & Kedziora, J. (2006, January). Superoxide anion as a marker of ischemia-reperfusion injury of the transplanted kidney. In Transplantation proceedings (Vol. 38, No. 1, pp. 46-48). Elsevier.
    [18] Kalogeris, T., Bao, Y., & Korthuis, R. J. (2014). Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox biology, 2, 702-714.
    [19] Wang, R., Wang, M., He, S., Sun, G., & Sun, X. (2020). Targeting calcium homeostasis in myocardial ischemia/reperfusion injury: an overview of regulatory mechanisms and therapeutic reagents. Frontiers in pharmacology, 11, 872.
    [20] Reed, G. W., Rossi, J. E., & Cannon, C. P. (2017). Acute myocardial infarction. The Lancet, 389(10065), 197-210.
    [21] Chiarito, M., Sanz-Sánchez, J., Cannata, F., Cao, D., Sturla, M., Panico, C., ... & Stefanini, G. G. (2020). Monotherapy with a P2Y12 inhibitor or aspirin for secondary prevention in patients with established atherosclerosis: a systematic review and meta-analysis. The Lancet, 395(10235), 1487-1495.
    [22] Current–Oasis 7 Investigators. (2010). Dose comparisons of clopidogrel and aspirin in acute coronary syndromes. New England Journal of Medicine, 363(10), 930-942.
    [23] Ojha, N., & Dhamoon, A. S. (2021). Myocardial infarction. In StatPearls [Internet]. StatPearls Publishing.
    [24] Zwetsloot, P. P., Végh, A. M. D., Jansen of Lorkeers, S. J., van Hout, G. P., Currie, G. L., Sena, E. S., ... & Sluijter, J. P. (2016). Cardiac stem cell treatment in myocardial infarction: a systematic review and meta-analysis of preclinical studies. Circulation Research, 118(8), 1223-1232.
    [25] Vagnozzi, R. J., Maillet, M., Sargent, M. A., Khalil, H., Johansen, A. K. Z., Schwanekamp, J. A., ... & Molkentin, J. D. (2020). An acute immune response underlies the benefit of cardiac stem cell therapy. Nature, 577(7790), 405-409.
    [26] Rosano, J. M., Cheheltani, R., Wang, B., Vora, H., Kiani, M. F., & Crabbe, D. L. (2012). Targeted delivery of VEGF after a myocardial infarction reduces collagen deposition and improves cardiac function. Cardiovascular engineering and technology, 3, 237-247.
    [27] Gupta, R., Liu, L., Zhang, X., Fan, X., Krishnamurthy, P., Verma, S., ... & Kishore, R. (2020). IL-10 provides cardioprotection in diabetic myocardial infarction via upregulation of Heme clearance pathways. JCI insight, 5(17).
    [28] Krishnamurthy, P., Rajasingh, J., Lambers, E., Qin, G., Losordo, D. W., & Kishore, R. (2009). IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circulation research, 104(2), e9-e18.
    [29] Yan, C., Quan, X. J., & Feng, Y. M. (2019). Nanomedicine for gene delivery for the treatment of cardiovascular diseases. Current gene therapy, 19(1), 20.
    [30] Ishikawa, K., Fish, K., Aguero, J., Yaniz-Galende, E., Jeong, D., Kho, C., ... & Hajjar, R. J. (2015). Stem cell factor gene transfer improves cardiac function after myocardial infarction in swine. Circulation: Heart Failure, 8(1), 167-174.
    [31] Niwano, K., Arai, M., Koitabashi, N., Watanabe, A., Ikeda, Y., Miyoshi, H., & Kurabayashi, M. (2008). Lentiviral vector–mediated SERCA2 gene transfer protects against heart failure and left ventricular remodeling after myocardial infarction in rats. Molecular Therapy, 16(6), 1026-1032.
    [32] Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 74(5), 1124-1136.
    [33] Horwitz, L. D. (2003). Bucillamine: a potent thiol donor with multiple clinical applications. Cardiovascular drug reviews, 21(2), 77-90.
    [34] Costa, C. R., Seara, F. A., Peixoto, M. S., Ramos, I. P., Barbosa, R. A., Carvalho, A. B., ... & Olivares, E. L. (2020). Progression of heart failure is attenuated by antioxidant therapy with N-acetylcysteine in myocardial infarcted female rats. Molecular Biology Reports, 47, 8645-8656.
    [35] Heusch, G., Bøtker, H. E., Przyklenk, K., Redington, A., & Yellon, D. (2015). Remote ischemic conditioning. Journal of the American College of Cardiology, 65(2), 177-195.
    [36] Kin, H., Zhao, Z. Q., Sun, H. Y., Wang, N. P., Corvera, J. S., Halkos, M. E., ... & Vinten-Johansen, J. (2004). Postconditioning attenuates myocardial ischemia–reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovascular research, 62(1), 74-85.
    [37] Hausenloy, D. J., & Yellon, D. M. (2013). Myocardial ischemia-reperfusion injury: a neglected therapeutic target. The Journal of clinical investigation, 123(1), 92-100.
    [38] Ahmed, L. A., Salem, H. A., Attia, A. S., & Agha, A. M. (2011). Pharmacological preconditioning with nicorandil and pioglitazone attenuates myocardial ischemia/reperfusion injury in rats. European journal of pharmacology, 663(1-3), 51-58.
    [39] Lee, S. H., Gupta, M. K., Bang, J. B., Bae, H., & Sung, H. J. (2013). Current progress in reactive oxygen species (ROS)‐responsive materials for biomedical applications. Advanced healthcare materials, 2(6), 908-915.
    [40] Milkovic, L., Cipak Gasparovic, A., Cindric, M., Mouthuy, P. A., & Zarkovic, N. (2019). Short overview of ROS as cell function regulators and their implications in therapy concepts. Cells, 8(8), 793.
    [41] Lennicke, C., & Cochemé, H. M. (2021). Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Molecular Cell, 81(18), 3691-3707.
    [42] Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current biology, 24(10), R453-R462.
    [43] Zuo, L., Best, T. M., Roberts, W. J., Diaz, P. T., & Wagner, P. D. (2015). Characterization of reactive oxygen species in diaphragm. Acta Physiologica, 213(3), 700-710.
    [44] Harris, I. S., & DeNicola, G. M. (2020). The complex interplay between antioxidants and ROS in cancer. Trends in cell biology, 30(6), 440-451.
    [45] Zhou, T., Prather, E. R., Garrison, D. E., & Zuo, L. (2018). Interplay between ROS and antioxidants during ischemia-reperfusion injuries in cardiac and skeletal muscle. International journal of molecular sciences, 19(2), 417.
    [46] Zhou, T., Chuang, C. C., & Zuo, L. (2015). Molecular characterization of reactive oxygen species in myocardial ischemia-reperfusion injury. BioMed research international, 2015.
    [47] Hendgen-Cotta, U. B., Esfeld, S., Coman, C., Ahrends, R., Klein-Hitpass, L., Flögel, U., ... & Totzeck, M. (2017). A novel physiological role for cardiac myoglobin in lipid metabolism. Scientific reports, 7(1), 43219.
    [48] Paradis, S., Charles, A. L., Meyer, A., Lejay, A., Scholey, J. W., Chakfé, N., ... & Geny, B. (2016). Chronology of mitochondrial and cellular events during skeletal muscle ischemia-reperfusion. American Journal of Physiology-Cell Physiology, 310(11), C968-C982.
    [49] Kim, J. S., Jin, Y., & Lemasters, J. J. (2006). Reactive oxygen species, but not Ca2+ overloading, trigger pH-and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. American Journal of Physiology-Heart and Circulatory Physiology, 290(5), H2024-H2034.
    [50] Jefferies, H., Coster, J., Khalil, A., Bot, J., McCauley, R. D., & Hall, J. C. (2003). Glutathione. ANZ Journal of Surgery, 73(7), 517-522.
    [51] Zelko, I. N., Mariani, T. J., & Folz, R. J. (2002). Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free radical biology and medicine, 33(3), 337-349.
    [52] Chelikani, P., Fita, I., & Loewen, P. C. (2004). Diversity of structures and properties among catalases. Cellular and Molecular Life Sciences CMLS, 61, 192-208.
    [53] Ferrari, R., Ceconi, C., Curello, S., Cargnoni, A., Alfieri, O., Pardini, A., ... & Visioli, O. (1991). Oxygen free radicals and myocardial damage: protective role of thiol-containing agents. The American journal of medicine, 91(3), S95-S105.
    [54] Ozaydin, M., Peker, O., Erdogan, D., Kapan, S., Turker, Y., Varol, E., ... & Ibrisim, E. (2008). N-acetylcysteine for the prevention of postoperative atrial fibrillation: a prospective, randomized, placebo-controlled pilot study. European heart journal, 29(5), 625-631.
    [55] Mao, H., Wang, L., Xiong, Y., Jiang, G., & Liu, X. (2022). Fucoxanthin attenuates oxidative damage by activating the Sirt1/Nrf2/HO-1 signaling pathway to protect the kidney from ischemia-reperfusion injury. Oxidative Medicine and Cellular Longevity, 2022.
    [56] Adluri, R. S., Thirunavukkarasu, M., Zhan, L., Maulik, N., Svennevig, K., Bagchi, M., & Maulik, G. (2013). Cardioprotective efficacy of a novel antioxidant mix VitaePro against ex vivo myocardial ischemia–reperfusion injury. Cell biochemistry and biophysics, 67, 281-286.
    [57] Tenório, M. C. D. S., Graciliano, N. G., Moura, F. A., Oliveira, A. C. M. D., & Goulart, M. O. F. (2021). N-acetylcysteine (NAC): impacts on human health. Antioxidants, 10(6), 967.
    [58] Ooi, S. L., Green, R., & Pak, S. C. (2018). N-Acetylcysteine for the treatment of psychiatric disorders: a review of current evidence. BioMed Research International, 2018.
    [59] Liu, X., Wang, L., Cai, J., Liu, K., Liu, M., Wang, H., & Zhang, H. (2019). N-acetylcysteine alleviates H2O2-induced damage via regulating the redox status of intracellular antioxidants in H9c2 cells. International Journal of Molecular Medicine, 43(1), 199-208.
    [60] Mao, X., Wang, T., Liu, Y., Irwin, M. G., Ou, J. S., Liao, X. L., ... & Xia, Z. (2013). N-acetylcysteine and allopurinol confer synergy in attenuating myocardial ischemia injury via restoring HIF-1α/HO-1 signaling in diabetic rats. PloS one, 8(7), e68949.
    [61] Rushworth, G. F., & Megson, I. L. (2014). Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacology & therapeutics, 141(2), 150-159.
    [62] De Andrade, K. Q., Moura, F. A., Dos Santos, J. M., De Araújo, O. R. P., de Farias Santos, J. C., & Goulart, M. O. F. (2015). Oxidative stress and inflammation in hepatic diseases: therapeutic possibilities of N-acetylcysteine. International journal of molecular sciences, 16(12), 30269-30308.
    [63] Harrison, P. M., Wendon, J. A., Gimson, A. E., Alexander, G. J., & Williams, R. (1991). Improvement by acetylcysteine of hemodynamics and oxygen transport in fulminant hepatic failure. New England Journal of Medicine, 324(26), 1852-1857.
    [64] Sen, C. K. (1997). Nutritional biochemistry of cellular glutathione. The Journal of Nutritional Biochemistry, 8(12), 660-672.
    [65] Raghu, G., Berk, M., Campochiaro, P. A., Jaeschke, H., Marenzi, G., Richeldi, L., ... & Calverley, P. M. (2021). The multifaceted therapeutic role of N-acetylcysteine (NAC) in disorders characterized by oxidative stress. Current Neuropharmacology, 19(8), 1202.
    [66] Yesilbursa, D., Serdar, A., Senturk, T., Serdar, Z., Sağ, S., & Cordan, J. (2006). Effect of N-acetylcysteine on oxidative stress and ventricular function in patients with myocardial infarction. Heart and vessels, 21, 33-37.
    [67] Li, Y., Rodrigues, J., & Tomas, H. (2012). Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chemical Society Reviews, 41(6), 2193-2221.
    [68] Sepantafar, M., Maheronnaghsh, R., Mohammadi, H., Radmanesh, F., Hasani-Sadrabadi, M. M., Ebrahimi, M., & Baharvand, H. (2017). Engineered hydrogels in cancer therapy and diagnosis. Trends in biotechnology, 35(11), 1074-1087.
    [69] Sun, Z., Song, C., Wang, C., Hu, Y., & Wu, J. (2019). Hydrogel-based controlled drug delivery for cancer treatment: a review. Molecular pharmaceutics, 17(2), 373-391.
    [70] Xian, S., VandenBerg, M. A., Xiang, Y., Yu, S., & Webber, M. J. (2022). Glucose-Responsive Injectable Thermogels via Dynamic-Covalent Cross-Linking of Pluronic Micelles. ACS Biomaterials Science & Engineering, 8(11), 4873-4885.
    [71] Qureshi, D., Nayak, S. K., Maji, S., Anis, A., Kim, D., & Pal, K. (2019). Environment sensitive hydrogels for drug delivery applications. European Polymer Journal, 120, 109220.
    [72] Huang, H., Qi, X., Chen, Y., & Wu, Z. (2019). Thermo-sensitive hydrogels for delivering biotherapeutic molecules: A review. Saudi Pharmaceutical Journal, 27(7), 990-999.
    [73] Liu, Y. Y., Shao, Y. H., & Lü, J. (2006). Preparation, properties and controlled release behaviors of pH-induced thermosensitive amphiphilic gels. Biomaterials, 27(21), 4016-4024.
    [74] Wang, Z., Ye, Q., Yu, S., & Akhavan, B. (2023). Poly Ethylene Glycol (PEG)‐based Hydrogels for Drug Delivery in Cancer Therapy. Advanced healthcare materials, 2300105.
    [75] Jeong, B., Kibbey, M. R., Birnbaum, J. C., Won, Y. Y., & Gutowska, A. (2000). Thermogelling biodegradable polymers with hydrophilic backbones: PEG-g-PLGA. Macromolecules, 33(22), 8317-8322.
    [76] Knop, K., Hoogenboom, R., Fischer, D., & Schubert, U. S. (2010). Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angewandte chemie international edition, 49(36), 6288-6308.
    [77] Li, L., Shan, H., Yue, C. Y., Lam, Y. C., Tam, K. C., & Hu, X. (2002). Thermally induced association and dissociation of methylcellulose in aqueous solutions. Langmuir, 18(20), 7291-7298.
    [78] Zhang, W., Jin, X., Li, H., Zhang, R. R., & Wu, C. W. (2018). Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release. Carbohydrate polymers, 186, 82-90.
    [79] Roy, D., Brooks, W. L., & Sumerlin, B. S. (2013). New directions in thermoresponsive polymers. Chemical Society Reviews, 42(17), 7214-7243.
    [80] Wei, H., Cheng, S. X., Zhang, X. Z., & Zhuo, R. X. (2009). Thermo-sensitive polymeric micelles based on poly (N-isopropylacrylamide) as drug carriers. Progress in Polymer Science, 34(9), 893-910.
    [81] Akiyama, Y., Kikuchi, A., Yamato, M., & Okano, T. (2004). Ultrathin poly (N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir, 20(13), 5506-5511.
    [82] Xu, X., Liu, Y., Fu, W., Yao, M., Ding, Z., Xuan, J., ... & Cao, M. (2020). Poly (N-isopropylacrylamide)-based thermoresponsive composite hydrogels for biomedical applications. Polymers, 12(3), 580.
    [83] Lanzalaco, S., & Armelin, E. (2017). Poly (N-isopropylacrylamide) and copolymers: A review on recent progresses in biomedical applications. Gels, 3(4), 36.
    [84] Akash, M. S. H., & Rehman, K. (2015). Recent progress in biomedical applications of Pluronic (PF127): Pharmaceutical perspectives. Journal of Controlled Release, 209, 120-138.
    [85] Sharma, P. K., & Bhatia, S. R. (2004). Effect of anti-inflammatories on Pluronic® F127: micellar assembly, gelation and partitioning. International journal of pharmaceutics, 278(2), 361-377.
    [86] Rahdar, A., Hajinezhad, M. R., Sargazi, S., Barani, M., Karimi, P., Velasco, B., ... & Zarei, S. (2022). Pluronic F127/carfilzomib-based nanomicelles as promising nanocarriers: Synthesis, characterization, biological, and in silico evaluations. Journal of Molecular Liquids, 346, 118271.
    [87] Abu-Serie, M. M., Andrade, F., Cámara-Sánchez, P., Seras-Franzoso, J., Rafael, D., Díaz-Riascos, Z. V., ... & Schwartz Jr, S. (2021). Pluronic F127 micelles improve the stability and enhance the anticancer stem cell efficacy of citral in breast cancer. Nanomedicine, 16(17), 1471-1485.
    [88] Diniz, I. M., Chen, C., Xu, X., Ansari, S., Zadeh, H. H., Marques, M. M., ... & Moshaverinia, A. (2015). Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. Journal of Materials Science: Materials in Medicine, 26, 1-10.
    [89] García-Couce, J., Tomás, M., Fuentes, G., Que, I., Almirall, A., & Cruz, L. J. (2022). Chitosan/Pluronic F127 thermosensitive hydrogel as an injectable dexamethasone delivery carrier. Gels, 8(1), 44.
    [90] Hamidi, M., Azadi, A., & Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Advanced drug delivery reviews, 60(15), 1638-1649.
    [91] Fan, R., Cheng, Y., Wang, R., Zhang, T., Zhang, H., Li, J., ... & Zheng, A. (2022). Thermosensitive hydrogels and advances in their application in disease therapy. Polymers, 14(12), 2379.
    [92] Siepmann, J., & Peppas, N. A. (2012). Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced drug delivery reviews, 64, 163-174.
    [93] Bell, C. L., & Peppas, N. A. (1995). Measurement of the swelling force in ionic polymer networks. III. Swelling force of interpolymer complexes. Journal of controlled release, 37(3), 277-280.
    [94] Uhrich, K. E., Cannizzaro, S. M., Langer, R. S., & Shakesheff, K. M. (1999). Polymeric systems for controlled drug release. Chemical reviews, 99(11), 3181-3198.
    [95] Kamaly, N., Yameen, B., Wu, J., & Farokhzad, O. C. (2016). Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chemical reviews, 116(4), 2602-2663.
    [96] Ye, H., Zhou, Y., Liu, X., Chen, Y., Duan, S., Zhu, R., ... & Yin, L. (2019). Recent advances on reactive oxygen species-responsive delivery and diagnosis system. Biomacromolecules, 20(7), 2441-2463.
    [97] Criado-Gonzalez, M., & Mecerreyes, D. (2022). Thioether-based ROS responsive polymers for biomedical applications. Journal of Materials Chemistry B, 10(37), 7206-7221.
    [98] Yu, S., Wang, C., Yu, J., Wang, J., Lu, Y., Zhang, Y., ... & Gu, Z. (2018). Injectable bioresponsive gel depot for enhanced immune checkpoint blockade. Advanced Materials, 30(28), 1801527.
    [99] Zhao, D., Zhou, Q., Yang, K., Yang, H., Tang, Q., & Zhang, X. (2019). An injectable ROS‐responsive self‐healing hydrogel based on tetra‐poly (ethylene glycol)‐b‐oligo (l‐methionine). Macromolecular Chemistry and Physics, 220(12), 1900106.
    [100] Tao, Z., Li, T. L., Yang, M., & Xu, H. G. (2022). Silibinin can promote bone regeneration of selenium hydrogel by reducing the oxidative stress pathway in ovariectomized rats. Calcified Tissue International, 110(6), 723-735.
    [101] Mao, L., Wang, L., Zhang, M., Ullah, M. W., Liu, L., Zhao, W., ... & Yang, G. (2021). In situ synthesized selenium nanoparticles‐decorated bacterial cellulose/gelatin hydrogel with enhanced antibacterial, antioxidant, and anti‐inflammatory capabilities for facilitating skin wound healing. Advanced healthcare materials, 10(14), 2100402.
    [102] Palo-Nieto, C., Blasi-Romero, A., Sandström, C., Balgoma, D., Hedeland, M., Strømme, M., & Ferraz, N. (2023). Functionalization of cellulose nanofibrils to develop novel ros-sensitive biomaterials. Materials Advances, 4(6), 1555-1565.
    [103] Thangavel, P., Ramachandran, B., Kannan, R., & Muthuvijayan, V. (2017). Biomimetic hydrogel loaded with silk and l‐proline for tissue engineering and wound healing applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(6), 1401-1408.
    [104] Gujral, S. S., Khatri, S., Riyal, P., & Gahlot, V. (2012). Suzuki cross coupling reaction-a review. Indo Glob. J. Pharm. Sci, 2, 351-367.
    [105] Maluenda, I., & Navarro, O. (2015). Recent developments in the Suzuki-Miyaura reaction: 2010–2014. Molecules, 20(5), 7528-7557.
    [106] Kuivila, H. G. (1954). Electrophilic displacement reactions. III. Kinetics of the reaction between hydrogen peroxide and benzeneboronic Acid1. Journal of the American Chemical Society, 76(3), 870-874.
    [107] de Gracia Lux, C., Joshi-Barr, S., Nguyen, T., Mahmoud, E., Schopf, E., Fomina, N., & Almutairi, A. (2012). Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide. Journal of the American Chemical Society, 134(38), 15758-15764.
    [108] Egawa, Y., Seki, T., Takahashi, S., & Anzai, J. I. (2011). Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives. Materials Science and Engineering: C, 31(7), 1257-1264.
    [109] Zhang, C., Losego, M. D., & Braun, P. V. (2013). Hydrogel-based glucose sensors: effects of phenylboronic acid chemical structure on response. Chemistry of Materials, 25(15), 3239-3250.
    [110] Wu, Y., Wang, Y., Long, L., Hu, C., Kong, Q., & Wang, Y. (2022). A spatiotemporal release platform based on pH/ROS stimuli-responsive hydrogel in wound repairing. Journal of Controlled Release, 341, 147-165.
    [111] Xu, Q., He, C., Xiao, C., & Chen, X. (2016). Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromolecular bioscience, 16(5), 635-646.
    [112] Boonlai, W., Tantishaiyakul, V., Hirun, N., Sangfai, T., & Suknuntha, K. (2018). Thermosensitive poloxamer 407/poly (acrylic acid) hydrogels with potential application as injectable drug delivery system. AAPS PharmSciTech, 19, 2103-2117.
    [113] Chen, H. H., Yu, N. Y., & Cheng, Y. H. (2022). Shear-thinning hydrogels containing reactive oxygen species-responsive nanoparticles for salvianolic acid B delivery to rescue oxidative damaged HUVECs. European Polymer Journal, 164, 110982.
    [114] Al Kayal, T., Panetta, D., Canciani, B., Losi, P., Tripodi, M., Burchielli, S., ... & Soldani, G. (2015). Evaluation of the effect of a gamma irradiated DBM-pluronic F127 composite on bone regeneration in Wistar rat. PLoS One, 10(4), e0125110.
    [115] Chai, M. N., & Isa, M. I. N. (2013). The oleic acid composition effect on the carboxymethyl cellulose based biopolymer electrolyte.
    [116] Gottlieb, H. E., Kotlyar, V., & Nudelman, A. (1997). NMR chemical shifts of common laboratory solvents as trace impurities. Journal of organic chemistry, 62(21), 7512-7515.
    [117] Shaikhullina, M., Khaliullina, A., Gimatdinov, R., Butakov, A., Chernov, V., & Filippov, A. (2020). NMR relaxation and self-diffusion in aqueous micellar gels of pluronic F-127. Journal of Molecular Liquids, 306, 112898.
    [118] Basak, R., & Bandyopadhyay, R. (2013). Encapsulation of hydrophobic drugs in Pluronic F127 micelles: effects of drug hydrophobicity, solution temperature, and pH. Langmuir, 29(13), 4350-4356.
    [119] Holback, H., Yeo, Y., & Park, K. (2011). Hydrogel swelling behavior and its biomedical applications. In Biomedical hydrogels (pp. 3-24). Woodhead Publishing.
    [120] Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., ... & Mozafari, M. R. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2), 57.
    [121] Richbourg, N. R., & Peppas, N. A. (2020). The swollen polymer network hypothesis: Quantitative models of hydrogel swelling, stiffness, and solute transport. Progress in Polymer Science, 105, 101243.
    [122] Peng, Y. W., Buller, C. L., & Charpie, J. R. (2011). Impact of N-acetylcysteine on neonatal cardiomyocyte ischemia-reperfusion injury. Pediatric research, 70(1), 61-66.
    [123] Cui, N., Hu, M., & Khalil, R. A. (2017). Biochemical and biological attributes of matrix metalloproteinases. Progress in molecular biology and translational science, 147, 1-73.
    [124] Mittal, R., Patel, A. P., Debs, L. H., Nguyen, D., Patel, K., Grati, M. H., ... & Liu, X. Z. (2016). Intricate functions of matrix metalloproteinases in physiological and pathological conditions. Journal of cellular physiology, 231(12), 2599-2621.
    [125] Walsh, M. J., Ali, L. R., Lenehan, P., Kureshi, C. T., Kureshi, R., Dougan, M., ... & Dougan, S. K. (2023). Blockade of innate inflammatory cytokines TNF α, IL-1 β, or IL-6 overcomes virotherapy-induced cancer equilibrium to promote tumor regression. Immunotherapy Advances, 3(1), ltad011.

    無法下載圖示 全文公開日期 2033/08/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE