研究生: |
陳致良 Zhi-Liang Chen |
---|---|
論文名稱: |
應用深度相機之室內研究定位改進 Depth Camera - Assisted Indoor Localization Enhancement |
指導教授: |
項天瑞
Tien-Ruey Hsiang |
口試委員: |
陳建中
Jiann-Jone Chen 李育杰 Yuh-Jye Lee |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 資訊工程系 Department of Computer Science and Information Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 室內定位 、SIFT影像特徵 、深度掃描 、三角定位 |
外文關鍵詞: | Indoor Localization, SIFT Descriptor, Depth map, Triangulation |
相關次數: | 點閱:717 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文利用深度攝影機重建點雲環境,取得環境資訊作定位。研究方法主要分成三個階段:建置點雲環境、虛擬照片拍攝及資料庫建置、特徵點定位,建置點雲環境的階段主要利用RANSAC 作初步的點雲重合,在利用Graph Slam 作拍攝路徑的最佳化,使得深度重合能夠擺放在理想的位置。藉由虛擬照片建置的影像資料庫,能夠取得一般相機所缺乏的定位資訊,像是距離景物較遠的距離,抑或是被障礙物遮蔽所導致特徵資訊缺乏的情形發生。在最後特徵點定位的階段,利用SIFT 將虛擬相片與代訂為相片作比對,求出的特徵點根據位置及其夾角進行三角定位。在實驗中,我們方法改善了定位成功的覆蓋率,以及平均誤差,說明照片的拍攝位置與角度,都會影響定位資訊的取得,藉由改善相機分布與角度的情況,能夠有效的減低定位誤差。
This paper develops an approach for image triangulation from point cloud.
This approach can be divided into three parts: reconstructing environment, virtual images database establishment and triangulation. During constructing virtual images database, we can acquire extra localization information which traditional image localization lacks. When camera is far from scene or camera is sheltered by objects, traditional SIFT localization may decrease the accuracy. Our approach provides higher localization accuracy and coverage ratio by choosing better camera angles and positions automatically. In experiments, we take practical localization by traditional SIFT localization and virtual images triangulation to compare result.
[1] I. Bekkerman and J. Tabrikian, “Target detection and localization using mimo
radars and sonars,” IEEE Transactions on Signal Processing, vol. 54, no. 10,
pp. 3873–3883, 2006.
[2] C.-H. Lim, Y. Wan, B.-P. Ng, and C.-M. See, “A real-time indoor wifi localization
system utilizing smart antennas,” IEEE Transactions on Consumer
Electronics, vol. 53, no. 2, pp. 618–622, 2007.
[3] J. Zhou and J. Shi, “RFID localization algorithms and applications—a review,”
Journal of Intelligent Manufacturing, vol. 20, pp. 695–707, 2009.
[4] B. Zitova and J. Flusser, “Image registration methods: a survey,” Image and
Vision Computing, vol. 21, pp. 977–1000, 2003.
[5] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International
Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.
[6] C. Harris and M. Stephens, “A combined corner and edge detector,” In Proc.
of Fourth Alvey Vision Conference, pp. 147–151, 1988.
[7] S. Thrun, D. Fox, W. Burgard, and D. F., “Robust Monte Carlo localization
for mobile robots,” Artificial Intelligence, vol. 128, pp. 99–141, 2001.
[8] D. Cobzas, H. Zhang, and M. Jagersand, “Image-based localization with depthenhanced
image map,” IEEE International Conference on Robotics and Automation
(ICRA), vol. 2, pp. 1570 – 1575, 2003.
[9] R. Rusu and S. Cousins, “3D is here: Point cloud library (PCL),” Proceedings
- IEEE International Conference on Robotics and Automation (ICRA), pp. 1–
4, 2011.
[10] K. Muthukrishnan, M. Lijding, and P. Havinga, “Towards smart surroundings:
Enabling techniques and technologies for localization,” Lecture Notes in
Computer Science, vol. 3479, pp. 350–362, 2005.
49
[11] J. Wang, R. Cipolla, and H. Zha, “Vision-based global localization using a
visual vocabulary,” Proceedings of the 2005 IEEE International Conference on
Robotics and Automation (ICRA), pp. 4230–4235, 2005.
[12] H. Andreasson, A. Treptow, and T. Duckett, “Localization for mobile robots
using panoramic vision, local features and particle filter,” Proceedings of the
2005 IEEE International Conference on Robotics and Automation (ICRA), pp.
3348–3353, 2005.
[13] T. Liu, M. Carlberg, G. Chen, J. Chen, J. Kua, and A. Zakhor, “Indoor localization
and visualization using a human-operated backpack system,” 2010
International Conference on Indoor Positioning and Indoor Navigation (IPIN),
pp. 1–10, 2010.
[14] F. Bonin-Font, A. Ortiz, and G. Oliver, “Visual navigation for mobile robots: A
survey,” Journal of Intelligent and Robotic Systems: Theory and Applications,
vol. 53, no. 3, pp. 263–296, 2008.
[15] D. Yuen and B. MacDonald, “Vision-based localization algorithm based on
landmark matching, triangulation, reconstruction, and comparison,” IEEE
Transactions on Robotics, vol. 21, no. 2, pp. 217–226, 2005.
[16] J. Kosecka and F. Li, “Vision based topological markov localization,” IEEE
International Conference on Robotics and Automation (ICRA), vol. 2, pp. 1481–
1486, 2004.
[17] J. Wolf, W. Burgard, and H. Burkhardt, “Robust vision-based localization
by combining an image-retrieval system with Monte Carlo localization,” IEEE
Transactions on Robotics, vol. 21, no. 2, pp. 208–216, 2005.
[18] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D mapping: Using
kinect-style depth cameras for dense 3D modeling of indoor environments,”
International Journal of Robotics Research, vol. 31, no. 5, pp. 647–663, 2012.
[19] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. Rendon-Mancha, “Visual simultaneous
localization and mapping: a survey,” Artificial Intelligence Review, pp.
1–27, 2012.
50
[20] K. Ho and P. Newman, “Detecting loop closure with scene sequences,” International
Journal of Computer Vision, vol. 74, no. 3, pp. 261–286, 2007.
[21] E. Eade and T. Drummond, “Monocular slam as a graph of coalesced observations,”
Proceedings of the IEEE International Conference on Computer Vision,
pp. 1–8, 2007.
[22] D. Chekhlov, W. Mayol-cuevas, and A. Calway, “Appearance based indexing
for relocalisation in real-time visual slam,” In 19th Bristish Machine Vision
Conference, pp. 363–372, 2008.
[23] A. Gil, scar Reinoso, M. Ballesta, and M. Julie, “Multi-robot visual slam using
a rao-blackwellized particle filter,” Robotics and Autonomous Systems, vol. 58,
no. 1, pp. 68–80, 2010.
[24] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, “Bundle adjustment
—a modern synthesis,” Vision Algorithms: Theory and Practice, vol. 1883, pp.
298–372, 2000.
[25] K. Konolige, G. Grisetti, R. Kummerle, W. Burgard, B. Limketkai, and R. Vincent,
“Efficient sparse pose adjustment for 2D mapping,” IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 22–29, 2010.
[26] S. Zhang, “Recent progresses on real-time 3D shape measurement using digital
fringe projection techniques,” Optics and Lasers in Engineering, vol. 48, no. 2,
pp. 149–158, 2010.
[27] C. Riechert, F. Zilly, M. Muller, and P. Kauff, “Advanced interpolation filters
for depth image based rendering,” 3DTV-Conference: The True Vision -
Capture, Transmission and Display of 3D Video (3DTV-CON), pp. 1–4, 2012.
[28] B. Oh, M. Chen, J. Dorsey, and F. Durand, “Image-based modeling and photo
editing,” ACM Special Interest Group on GRAPHics and Interactive Techniques
(SIGGRAPH) Papers - International Conference on Computer Graphics and
Interactive Techniques, 2001.
51
[29] D. Wang, J. Liu, J. Sun, W. Liu, and Y. Li, “A novel key-frame extraction
method for semi-automatic 2D-to-3D video conversion,” IEEE International
Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp.
1–5, 2012.
[30] H. Du, P. Henry, X. Ren, M. Cheng, D. B. Goldman, S. M. Seitz, and D. Fox,
“Interactive 3D modeling of indoor environments with a consumer depth camera,”
Proceedings of the 13th international conference on Ubiquitous computing
- UbiComp ’11, pp. 75–84, 2011.
[31] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography.”
Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.