簡易檢索 / 詳目顯示

研究生: 李松泉
Sung-Chuan - Lee
論文名稱: 感知位置之物聯網智慧節能應用
Location-aware Smart Energy Saving on IoT Applications
指導教授: 陳俊良
Jiann-Liang Chen
口試委員: 郭斯彥
Sy-Yen Kuo
黎碧煌
Bih-Hwang Lee
張耀中
Yao-Chung Chang
馬奕葳
Yi-Wei Ma
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 76
中文關鍵詞: 物聯網藍牙低功率裝置廣播頻率室內定位
外文關鍵詞: Internet of Things, Bluetooth Low Energy (BLE), Advertising interval time, Indoor positioning
相關次數: 點閱:368下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著無線通訊技術快速發展,物聯網(Internet of Things, IoTs)的應用領域廣泛、且物件種類多元,如何達成物件自動配置及提升物件操控性,以降低使用者設定問題並能符合節能概念,皆為物聯網未來探討之議題。值得注意的是,基於智慧型行動裝置的可攜性、無線通訊與行動運算等優點,藉由與物聯網之相互結合,能衍生出更豐富且創新的應用服務。目前市面上所提的藍牙低功率裝置(BLE)可應用於室內定位,然而隨時隨地的知道感知位置是會非常耗電的,若數十個人戴著穿戴式裝置,則需透過額外的人力,隨時檢查電池使用狀況、幫忙充電或更換電池裝置,更甚者乃至於一百個、一千個穿戴式裝置,將會是個很可觀的工程。本研究所探討之議題在於感知位置的精確度和廣播頻率(Advertising interval time)耗電之間的取捨,分析物聯網BLE節點之資料特性與定位應用,並依照定位結果去動態調整資料的處理方式,進而達到BLE節點行動裝置省電之功效。因此,本研究提出一套智慧節能物聯網架構的可行方案,使用智慧型行動裝置作為物聯網之中間層,並將連線模組與掃描模組擷取資訊建立於中間層內,隨著應用程式啟動,物聯網裝置資訊將透過中間層,待掃描模組擷取資訊後,資訊將交由後端伺服器做定位的功能,定位功能是一直持續在運作的並根據實際執行經驗和定位的準確性,動態的調整廣播間隔時間。最後,本研究提出兩項智慧節電生活應用,分別為遊樂園與養護中心,透過不同之應用情境進行分析,根據研究結果顯示,相較於預設的BLE節點廣播間隔時間,智慧節能物聯網架構分別節省了58.3% 與64.7%的電源消耗,故動態調整廣播間隔時間的處理方式能確實降低電源消耗,有效的延長設備的使用時間。


    With the rapid development of wireless communication technology, a wide range of applications and multiple object genres of Internet of Things (IoTs), how to achieve automatic object allocation and enhance object handling to reduce user setting problems and conform to the concept of energy conservation are IoTs issues to be investigated. What is noteworthy is that smart mobile devices, with the advantages of portability, wireless communication capability and mobile computing capability, have been rapidly developed. Currently, the Bluetooth low energy (BLE) devices which performed anytime and anywhere would be very energy consuming for indoor positioning. Moreover, if ten persons are equipped with wearable devices, extra manpower would be required to check the battery usage status, help to charge batteries or replace battery devices. Even worse, if one hundred or even one thousand persons are equipped with wearable devices, the efforts required would be substantial. This study investigated the issues regarding the trade-offs between accuracy of sensor positioning and the power consumption of frequency for advertising interval time. Also, the data characteristics of BLE nodes in the IoTs network and their applications in positioning based on which the data processing method was dynamically adjusted to achieve the effect of energy conservation for the BLE nodes of the mobile device network are analyzed. This study proposed a feasible alternative for the smart energy saving IoTs framework wherein the smart mobile devices were used as the middle tier, in which information captured by connection and scanning modules was built. With the activation of the application program, the IoTs information captured by the scanning module via the middle tier, would be transmitted to a backend server to perform positioning function wherein the positioning function operates continuously. Based on the practical implementation and experience, the accuracy of positioning and advertising interval time would be dynamically adjusted. Finally, this study proposed two scenarios of smart energy conservation for amusement park and convalescent center. The experiential results suggest that, compared to the default advertising interval time of the BLE nodes, the advertising interval time achieved by the smart energy conservation IoTs framework reduces 58.3% and 64.7% of energy consumption respectively for the two examples. The proposed method with dynamically adjust advertising interval time indeed reduces power consumption and effectively extends the usage time of fully charged equipment.

    目錄 摘要 I 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 10 1.1 研究動機 10 1.2 研究方法 14 1.3 研究貢獻 15 1.4 論文架構 16 第二章 背景知識 17 2.1 Bluetooth/IEEE 802.15.1 17 2.2 藍牙(Bluetooth) 18 2.2.1 藍牙技術規格 19 2.2.2 藍牙技術的演進 19 2.2.3 Bluetooth Low Energy (BLE) 21 2.2.4 傳統BT與BLE架構 21 2.2.5 BLE工作方式 24 2.2.6 BLE低功耗特點 25 2.3 室內定位演算法 27 2.3.1 訊號強度(RSSI) 28 2.3.2 三角定位演算法 29 2.4 IoT (Internet of Things) 30 第三章 系統架構與功能設計 32 3.1 系統架構及軟硬體介紹 34 3.2 系統軟體流程說明 38 3.2.1 Application Server作業流程: 38 3.2.2 BLE基站軟體流程說明 39 3.2.3 BLE Device軟體研究流程說明 41 3.3 功能開發與設計 48 3.3.1 目標位置定位查詢 49 3.3.2 設定群組功能 50 3.3.3 主要場域設定 54 3.3.4 定位驗證環境及使用工具 56 第四章 系統設計與效能分析 59 4.1 系統設計 59 4.1.1 定位運算分析: 59 4.1.2 實際定位結果分析: 62 4.1.3 累積分佈函數 65 4.2 效能分析 66 4.2.1 Advertising之耗電流分析: 66 4.2.2 情境耗電流分析: 69 第五章 結論與未來展望 71 5.1 結論 71 5.2 未來展望 71 參考文獻 72

    [1]T. Liu, and D. Lu, "The application and development of IoT," Proceedings of the Information Symposium on Technology in Medicine and Education, pp. 991-994, 2012.
    [2]R. Kanan, and O. Elhassan, "A combined batteryless radio and WiFi indoor Positioning System," Proceedings of the International Conference on Software, Telecommunications and Computer Networks, pp. 101-107, 2015.
    [3]C. Perera, C. H. Liu, S. Jayawardena and M. Chen, "A survey on internet of things from industrial market perspective," Proceedings of the IEEE Access 2, pp. 1660-1679, 2014.
    [4]M. G. Hassan, G. Chen, R. U. Haque, M. Wieckowski, Y. Kim, G. Kim and M. Seok, "Circuits for a cubic-millimeter energy-autonomous wireless intraocular pressure monitor," Proceedings of the IEEE Transactions on Circuits and Systems I, pp. 3152-3162, 2013.
    [5]P. Handel, I. Skog, J. Wahlstrom, F. Bonawiede, R. Welch, J. Ohlsson and M. Ohlsson, "Insurance telematics: Opportunities and challenges with the smartphone solution," Proceedings of the IEEE Intelligent Transportation Systems Magazine, pp. 57-70, 2014.
    [6]X. Kun, X. Xinyue and W. Nan, "Design of vehicle control system based on bluetooth low energy smartphone platform," Proceedings of the International Conference on Electrical Machines and Systems, pp. 1498-1502, 2013.
    [7]T. Andersson, "Bluetooth low energy and smartphones for proximity-based automatic door locks,” 2014.
    [8]E. I. Gaura, J. Brusey, M. Allen, R. Wilkins, D. Goldsmith and R. Rednic, "Edge mining the internet of things," Proceedings of the IEEE Sensors Journal, pp. 3816-3825, 2013.
    [9]B. Yu, L. Xu and Y. Li, "Bluetooth low energy (BLE) based mobile electrocardiogram monitoring system," Proceedings of the International Conference on Information and Automation, pp. 763-767, 2012.
    [10]S. I. G. Bluetooth, "Bluetooth core specification version 4.2," Proceedings of the Specification of the Bluetooth System, 2014.
    [11]F. Martelli, "Bluetooth® low energy," Proceedings of the University of Bologna, 2014.
    [12]W. Y. Chung, "Enhanced RSSI-based real-time user location tracking system for indoor and outdoor environments," Proceedings of the International Conference on Convergence Information Technology, pp. 1213-1218, 2007.
    [13]S. Y. Shin, H. S. Park, S. Choi and W. H. Kwon, "Packet error rate analysis of ZigBee under WLAN and Bluetooth interferences," Proceedings of the IEEE Transactions on Wireless Communications, pp. 2825-2830, 2007.
    [14]A. Kamilaris, B. Kalluri, S. Kondepudi and T. K. Wai, "A literature survey on measuring energy usage for miscellaneous electric loads in offices and commercial buildings," Proceedings of the Renewable and Sustainable Energy Reviews 34, pp. 536-550, 2014.
    [15]M. D'Souza, T. Wark and M. Ros, "Wireless localisation network for patient tracking," Proceedings of the International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 79-84 2008.
    [16]P. L. R. Chze, W. K. W. Yan and K. S. Leong, "A User-Controllable Multi-Layer Secure Algorithm for MANET," Proceedings of the International Wireless Communications and Mobile Computing Conference, pp. 1080-1084, 2012.
    [17]Y. Wang, X. Yang, Y. Zhao, Y. Liu and L. Cuthbert, "Bluetooth positioning using RSSI and triangulation methods," Proceedings of the Consumer Communications and Networking Conference, pp. 837-842, 2013.
    [18]J. Xu, W. Liu, F. Lang, Y. Zhang and C. Wang, "Distance measurement model based on RSSI in WSN," Proceedings of the Wireless Sensor Network, 2010.
    [19]C. Perera, A. Zaslavsky, P. Christen and D. Georgakopoulos, "Context aware computing for the internet of things: A survey," Proceedings of the IEEE Communications Surveys & Tutorials, pp. 414-454, 2014.
    [20]A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton and T. Razafindralambo, "A survey on facilities for experimental internet of things research," Proceedings of the IEEE Communications Magazine, pp. 58-67, 2011.
    [21]Y. Jararweh, A. Doulat, O. AlQudah, E. Ahmed, M. Al-Ayyoub and E. Benkhelifa, "The Future of Mobile Cloud Computing: Integrating Cloudlets and Mobile Edge Computing," Proceedings of the International Conference on Telecommunications, pp. 1-5, 2016.
    [22]S. Bandyopadhyay, M. Sengupta, S. Maiti and S. Dutta, "Role of middleware for internet of things: A study," Proceedings of the International Journal of Computer Science and Engineering Survey, pp. 94-105, 2011.
    [23]A. Conti, D. Dardari, G. Pasolini and O. Andrisano, "Bluetooth and IEEE 802.11 b coexistence: analytical performance evaluation in fading channels," Proceedings of the IEEE Journal on Selected Areas in Communications, pp. 259-269, 2003.
    [24]E. Mackensen, M. Lai and T. M. Wendt, "Performance analysis of an Bluetooth Low Energy sensor system," Proceedings of the Symposium on Wireless Systems, pp. 62-66, 2012.
    [25]Nordic Softdevice S130 Specification v1.0.0, [Online]. Available:
    http://infocenter.nordicsemi.com/pdf/S130_SDS_v1.0.pdf.
    [26]NRF51822 Product Specification v3.1, [Online]. Available:
    http://infocenter.nordicsemi.com/pdf/nRF51822_PS_v3.1.pdf.
    [27]Bluetooth Generic Access Profile, [Online]. Available:
    https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile.
    [28]人的正常步行速度是多少,[Online]. Available:
    http://www.yantawmb.com/ztnews/hkhqjhhfdlneflhnpmidhgen.html.

    QR CODE