簡易檢索 / 詳目顯示

研究生: 吳承宥
Chen-You Wu
論文名稱: 具有可調節物理特性的導電超分子複合材料增強其細胞生長和傷口癒合
Conductive Supramolecular Composites with Tailorable Physical Properties that Enhance Cell Growth and Wound Healing
指導教授: 鄭智嘉
Chih-Chia Cheng
口試委員: 莊偉綜
Wei-Tsung Chuang
邱智瑋
Chih-Wei Chiu
李愛薇
Ai-Wei Lee
陳建光
Jem-Kun Chen
楊長謀
Chang-Mou Yang
江偉宏
Wei-Hung Chiang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 136
中文關鍵詞: 石墨烯超分子聚合物二維材料氫鍵細胞增殖
外文關鍵詞: graphene, supramolecular polymer, 2D nanomaterials, hydrogen bond, cell proliferation
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 目錄 摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 X 表目錄 XIV 第一章 緒論 1 1.1研究背景 1 1.2研究動機 3 第二章 文獻回顧 5 2.1超分子聚合物(Supramolecular Polymer) 5 2.2分子自組裝 ( Self-Assembly ) 7 2.3聚己内酯 ( Polycaprolactone,PCL) 9 2.4氫鍵 ( Hydrogen bonding) 11 2.5 腺嘌呤 ( Adenine ) 13 2.6石墨烯 ( Graphene) 15 2.6.1 石墨烯概述 15 2.6.2 石墨烯製備方法 17 2.7複合材料 (Composite materials) 21 2.8組織工程 (Tissue engineering) 23 2.8.1組織工程組成(Components of tissue engineering) 23 2.8.2組織工程皮膚傷口的建立(Applications of tissue engineering) 24 2.8.3組織工程挑戰 26 2.9文獻回顧總結 27 第三章 實驗材料與方法 28 3.1研究設計 28 3.2實驗材料 30 3.2.1實驗藥品 30 3.2.2實驗溶劑 33 3.2.3細胞實驗材料 35 3.2.4相關實驗材料 37 3.3實驗儀器與設備參數 38 3.3.1旋轉塗佈機(Spin Coaters) 38 3.3.2流變儀(Rheometer) 38 3.3.3酵素免疫分析儀(ELISA Reader) 39 3.3.4 CO2培養箱(CO2 incubators) 39 3.3.5紫外線光譜儀(UV/Vis spectrophotometer ,UV/Vis) 39 3.3.6冷凍離心機(Refrigerated Centrifuge) 40 3.3.7斜式旋轉濃縮機(Rotary Evaporation) 40 3.3.8振盪混合器(Vortex Mixer) 41 3.3.9拉曼光譜儀(Raman Spectrometer) 41 3.3.10熱重分析儀(Thermogravimetric analysis,TGA) 41 3.3.11化學分析影像能譜儀(ESCA) 42 3.3.12原子力顯微鏡(Atomic Force Microscpoic,AFM) 43 3.3.13差示掃描量熱儀(Differential scanning calorimetry,DSC) 43 3.3.14高解析度場發射掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 44 3.3.15傅里葉轉換紅外光譜(Fourier transform infrared spectroscopy,FTIR) 45 3.3.16穿透式電子顯微鏡(Transmission electron microscope,TEM) 45 3.3.17 廣角繞射儀 (Wide Angle X-ray Diffraction) 46 3.3.18 廣角及小角繞射儀 (Wide and Small Angle X-ray Diffraction) 46 3.3.19 電化學阻抗頻譜分析 (Electrochemistry Impedance Spectroscopy, EIS) 47 3.3.20 直流電源供應器 47 3.4實驗合成步驟 48 3.4.1合成 PCL (Polycaprolactone triol) triacrylate 48 3.4.2 合成 PCLtri-A 49 3.4.3製備PCLtri-A/graphite 複合材料 50 3.5樣品製備 51 3.5.1薄膜試片製備 51 3.6細胞生物性製備 51 3.6.1磷酸鹽緩衝生理鹽水(Phosphate buffered saline,PBS) 51 3.6.2胰蛋白酶(Trypsin - EDTA) 51 3.6.3細胞培養基(Dulbecco's Modified Eagle Medium,DMEM) 52 3.6.4細胞解凍培養 52 3.6.5細胞培養條件及繼代 52 3.6.6細胞計數 53 3.6.7細胞生物毒性 53 3.6.8細胞畫刻實驗 54 3.6.9螢光顯微鏡製備 54 3.6.9通電後細胞計數 55 第四章 結果與討論 56 4.1材料鑑定 57 4.1.1核磁共振氫譜 (1H NMR) 58 4.1.2可見光/紫外光分光光譜儀測試 (UV/Vis spectrophotometer) 59 4.1.3傅里葉轉換紅外光譜 (FTIR) 62 4.1.4熱重分析儀 (TGA) 65 4.1.5熱差式分析儀 (DSC) 67 4.1.6 X-射線繞射分析 (XRD) 70 4.1.7小角度X光散射 (SAXS) 72 4.1.8拉曼光譜 (Raman Spectrometer) 73 4.1.9化學分析影像能譜儀 (ESCA) 76 4.1.10電化學阻抗頻譜分析 (EIS) 80 4.1.11流變測試 (Rheometer test) 81 4.2材料表面分析 84 4.2.1水接觸角 (Contact angle) 84 4.2.1掃描式電子顯微鏡 (SEM)、原子力顯微鏡 (AFM) 85 4.2.3穿透式電子顯微鏡 (TEM) 90 4.3細胞實驗分析 91 4.3.1細胞毒性測試 (Cytotoxicity test) 91 4.3.2 細胞生長率分析 (Cell growth analysis) 93 4.3.3細胞畫刻測試 (Cell migration test) 95 4.4.4 細胞螢光顯微鏡分析 (CLSM) 98 4.4.5 施加電場之細胞增殖 101 第五章 結論 102 第六章 未來展望 104 第七章 參考文獻 105

    1. Wallace, P. R. (1947). The band theory of graphite. Physical review, 71(9), 622.
    2. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), 666-669.
    3. Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 321(5887), 385-388.
    4. Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., ... & Stormer, H. L. (2008). Ultrahigh electron mobility in suspended graphene. Solid state communications, 146(9-10), 351-355.
    5. Obeng, Y., & Srinivasan, P. (2011). Graphene: Is it the future for semiconductors? An overview of the material, devices, and applications. Electrochemical Society Interface, 20(1), 47.
    6. Luo, J., Jang, H. D., & Huang, J. (2013). Effect of sheet morphology on the scalability of graphene-based ultracapacitors. ACS nano, 7(2), 1464-1471.
    7. Ming, H., Li, X., Wei, Y., Bu, L., Kang, Z., & Zheng, J. (2013). Facile synthesis of ionic-liquid functionalized graphite oxide nanosheets for a highly efficient fuel cell. RSC advances, 3(11), 3655-3660.
    8. Yang, X., Zhang, X., Liu, Z., Ma, Y., Huang, Y., & Chen, Y. (2008). High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. The Journal of Physical Chemistry C, 112(45), 17554-17558.
    9. Ohno, Y., Maehashi, K., & Matsumoto, K. (2010). Label-free biosensors based on aptamer-modified graphene field-effect transistors. Journal of the American Chemical Society, 132(51), 18012-18013.
    10. Cohen-Karni, T., Qing, Q., Li, Q., Fang, Y., & Lieber, C. M. (2010). Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano letters, 10(3), 1098-1102.
    11. Shadjou, N., Hasanzadeh, M., & Khalilzadeh, B. (2018). Graphene based scaffolds on bone tissue engineering. Bioengineered, 9(1), 38-47.
    12. Hutmacher, D. W., Fu, X., Tan, B. K., & Schantz, J. T. (2002). Tissue engineering of elastic cartilage by using scaffold/cell constructs with different physical and chemical properties. In Polymer Based Systems on Tissue Engineering, Replacement and Regeneration (pp. 313-332). Springer, Dordrecht.
    13. Chen, G., Ushida, T., & Tateishi, T. (2001). Poly (DL‐lactic‐co‐glycolic acid) sponge hybridized with collagen microsponges and deposited apatite particulates. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 57(1), 8-14.
    14. Babensee, J. E., Anderson, J. M., McIntire, L. V., & Mikos, A. G. (1998). Host response to tissue engineered devices. Advanced drug delivery reviews, 33(1-2), 111-139.
    15. Fan, M., Yan, J., Tan, H., Ben, D., He, Q., Huang, Z., & Hu, X. (2014). Nanostructured gel scaffolds for osteogenesis through biological assembly of biopolymers via specific nucleobase pairing. Macromolecular bioscience, 14(11), 1521-1527.
    16. Buerkle, L. E., von Recum, H. A., & Rowan, S. J. (2012). Toward potential supramolecular tissue engineering scaffolds based on guanosine derivatives. Chemical Science, 3(2), 564-572.
    17. Saunders, L., & Ma, P. X. (2019). Self‐Healing Supramolecular Hydrogels for Tissue Engineering Applications. Macromolecular bioscience, 19(1), 1800313.
    18. Lai, C. L., Chen, J. T., Fu, Y. J., Liu, W. R., Zhong, Y. R., Huang, S. H., ... & Lee, K. R. (2015). Bio-inspired cross-linking with borate for enhancing gas-barrier properties of poly (vinyl alcohol)/graphene oxide composite films. Carbon, 82, 513-522.
    19. Fan, H., Wang, L., Zhao, K., Li, N., Shi, Z., Ge, Z., & Jin, Z. (2010). Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules, 11(9), 2345-2351.
    20. Lehn, J. M. (1978). Cryptates: the chemistry of macropolycyclic inclusion complexes. Accounts of chemical research, 11(2), 49-57.
    21. Lehn, J. M. (1993). Supramolecular chemistry. Science, 260(5115), 1762-1764.
    22. Whitesides, G. M., Mathias, J. P., & Seto, C. T. (1991). Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science, 254(5036), 1312-1319.
    23. Kyba, E. P., Helgeson, R. C., Madan, K., Gokel, G. W., Tarnowski, T. L., Moore, S. S., & Cram, D. J. (1977). Host-guest complexation. 1. Concept and illustration. Journal of the American Chemical Society, 99(8), 2564-2571.
    24. Dervan, P. B. (2001). Molecular recognition of DNA by small molecules. Bioorganic & medicinal chemistry, 9(9), 2215-2235.
    25. Dobrawa, R., Lysetska, M., Ballester, P., Grüne, M., & Würthner, F. (2005). Fluorescent supramolecular polymers: Metal directed self-assembly of perylene bisimide building blocks. Macromolecules, 38(4), 1315-1325.
    26. Thangavel, G., Tan, M. W. M., & Lee, P. S. (2019). Advances in self-healing supramolecular soft materials and nanocomposites. Nano convergence, 6(1), 29.
    27. Sabatier, P. A. (1986). Top-down and bottom-up approaches to implementation research: a critical analysis and suggested synthesis. Journal of public policy, 21-48.
    28. Fyfe, Synthetic supramolecular chemistry. 1997. 30(10): p. 393-401.
    29. Schwager, F., Marand, E., & Davis, R. M. (1996). Determination of self-association equilibrium constants of ethanol by FTIR spectroscopy. The Journal of Physical Chemistry, 100(50), 19268-19272.
    30. Antunes, J. C., Gonçalves, R. M. G., & Barbosa, M. A. (2016). Chitosan/Poly (γ-glutamic acid) Polyelectrolyte Complexes: From Self-Assembly to Application in Biomolecules Delivery and Regenerative Medicine. Res. Rev.: J. Mater. Sci, 4(04), 12-36.
    31. Natta, F. J. V., Hill, J. W., & Carothers, W. H. (1934). Studies of polymerization and ring formation. XXIII. 1 ε-Caprolactone and its polymers. Journal of the American Chemical Society, 56(2), 455-457.
    32. Sowmya, S., Bumgardener, J. D., Chennazhi, K. P., Nair, S. V., & Jayakumar, R. (2013). Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Progress in Polymer Science, 38(10-11), 1748-1772.
    33. Li, Z., & Tan, B. H. (2014). Towards the development of polycaprolactone based amphiphilic block copolymers: molecular design, self-assembly and biomedical applications. Materials Science and Engineering: C, 45, 620-634.
    34. Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in polymer science, 37(11), 1552-1596.
    35. Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in polymer science, 35(10), 1217-1256.
    36. Mohamed, R. M., & Yusoh, K. (2016). A review on the recent research of polycaprolactone (PCL). In Advanced Materials Research (Vol. 1134, pp. 249-255). Trans Tech Publications Ltd.
    37. Bosnian, A. W., Brunsveld, L., Folmer, B. J. B., Sijbesma, R. P., & Meijer, E. W. (2003, October). Supramolecular polymers: from scientific curiosity to technological reality. In Macromolecular Symposia (Vol. 201, No. 1, pp. 143-154). Weinheim: WILEY‐VCH Verlag.
    38. Cheng, C. C., Chang, F. C., Dai, S. A., Lin, Y. L., & Lee, D. J. (2015). Bio-complementary supramolecular polymers with effective self-healing functionality. RSC advances, 5(110), 90466-90472.
    39. Karikari, A. S., Mather, B. D., & Long, T. E. (2007). Association of star-shaped poly (D, L-lactide) s containing nucleobase multiple hydrogen bonding. Biomacromolecules, 8(1), 302-308.
    40. Vinogradov, A. E. (2003). DNA helix: the importance of being GC‐rich. Nucleic acids research, 31(7), 1838-1844.
    41. Nabel, C. S., Manning, S. A., & Kohli, R. M. (2012). The curious chemical biology of cytosine: deamination, methylation, and oxidation as modulators of genomic potential. ACS chemical biology, 7(1), 20-30.
    42. Smith, N. G., & Eyre-Walker, A. (2001). Synonymous codon bias is not caused by mutation bias in G+ C-rich genes in humans. Molecular Biology and Evolution, 18(6), 982-986.
    43. Sessler, J. L., Jayawickramarajah, J., Gouloumis, A., Torres, T., Guldi, D. M., Maldonado, S., & Stevenson, K. J. (2005). Synthesis and photophysics of a porphyrin–fullerene dyad assembled through Watson–Crick hydrogen bonding. Chemical communications, (14), 1892-1894.
    44. Chen, Q., Frankel, D. J., & Richardson, N. V. (2002). Self-assembly of adenine on Cu (110) surfaces. Langmuir, 18(8), 3219-3225.
    45. Allen, M. J., Tung, V. C., & Kaner, R. B. (2010). Honeycomb carbon: a review of graphene. Chemical reviews, 110(1), 132-145.
    46. Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., & Roth, S. (2007). The structure of suspended graphene sheets. Nature, 446(7131), 60-63.
    47. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. S., Zheng, Y., ... & Kim, Y. J. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology, 5(8), 574.
    48. Brodie, B. C. (1859). XIII. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, (149), 249-259.
    49. Staudenmaier, L. (1898). Verfahren zur darstellung der graphitsäure. Berichte der deutschen chemischen Gesellschaft, 31(2), 1481-1487.
    50. Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339.
    51. Pham, V. H., Cuong, T. V., Hur, S. H., Shin, E. W., Kim, J. S., Chung, J. S., & Kim, E. J. (2010). Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon, 48(7), 1945-1951.
    52. Geng, Y., Wang, S. J., & Kim, J. K. (2009). Preparation of graphite nanoplatelets and graphene sheets. Journal of colloid and interface science, 336(2), 592-598.
    53. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., ... & Boland, J. J. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature nanotechnology, 3(9), 563-568.
    54. Raccichini, R., Varzi, A., Passerini, S., & Scrosati, B. (2015). The role of graphene for electrochemical energy storage. Nature materials, 14(3), 271-279.
    55. Moghadam, A. D., Omrani, E., Menezes, P. L., & Rohatgi, P. K. (2015). Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene–a review. Composites Part B: Engineering, 77, 402-420.
    56. Stankovich, S., Dikin, D. A., Dommett, G. H., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., ... & Ruoff, R. S. (2006). Graphene-based composite materials. nature, 442(7100), 282-286.
    57. Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature nanotechnology, 4(4), 217-224.
    58. Carotenuto, G., De Nicola, S., Palomba, M., Pullini, D., Horsewell, A., Hansen, T. W., & Nicolais, L. (2012). Mechanical properties of low-density polyethylene filled by graphite nanoplatelets. Nanotechnology, 23(48), 485705.
    59. Cho, Y., Min, S. K., Yun, J., Kim, W. Y., Tkatchenko, A., & Kim, K. S. (2013). Noncovalent interactions of DNA bases with naphthalene and graphene. Journal of Chemical Theory and Computation, 9(4), 2090-2096.
    60. 宋信文 and 行. 梁晃千,科學發展, 建立人類的身體工房--組織工程. 2003(362): p. 6-11.
    61. Patrick Jr, C. W. (2000, October). Adipose tissue engineering: the future of breast and soft tissue reconstruction following tumor resection. In Seminars in surgical oncology (Vol. 19, No. 3, pp. 302-311). New York: John Wiley & Sons, Inc..
    62. Asadian, M., Chan, K. V., Norouzi, M., Grande, S., Cools, P., Morent, R., & De Geyter, N. (2020). Fabrication and Plasma Modification of Nanofibrous Tissue Engineering Scaffolds. Nanomaterials, 10(1), 119.
    63. Kawasumi, A., Sagawa, N., Hayashi, S., Yokoyama, H., & Tamura, K. (2012). Wound healing in mammals and amphibians: toward limb regeneration in mammals. In New Perspectives in Regeneration (pp. 33-49). Springer, Berlin, Heidelberg.
    64. Rhett, J. M., Ghatnekar, G. S., Palatinus, J. A., O’Quinn, M., Yost, M. J., & Gourdie, R. G. (2008). Novel therapies for scar reduction and regenerative healing of skin wounds. Trends in biotechnology, 26(4), 173-180.
    65. Ye, X., Li, X., Shen, Y., Chang, G., Yang, J., & Gu, Z. (2017). Self-healing pH-sensitive cytosine-and guanosine-modified hyaluronic acid hydrogels via hydrogen bonding. Polymer, 108, 348-360.
    66. Liu, M., Wu, C., Jiao, Y., Xiong, S., & Zhou, C. (2013). Chitosan–halloysite nanotubes nanocomposite scaffolds for tissue engineering. Journal of Materials Chemistry B, 1(15), 2078-2089.
    67. Williams, D. F. (2019). Challenges with the development of biomaterials for sustainable tissue engineering. Frontiers in bioengineering and biotechnology, 7, 127.
    68. Muhabie, A. A., Cheng, C. C., Huang, J. J., Liao, Z. S., Huang, S. Y., Chiu, C. W., & Lee, D. J. (2017). Non-covalently functionalized boron nitride mediated by a highly self-assembled supramolecular polymer. Chemistry of Materials, 29(19), 8513-8520.
    69. Sivakova, S., Bohnsack, D. A., Mackay, M. E., Suwanmala, P., & Rowan, S. J. (2005). Utilization of a combination of weak hydrogen-bonding interactions and phase segregation to yield highly thermosensitive supramolecular polymers. Journal of the American Chemical Society, 127(51), 18202-18211.
    70. Shimizu, T., Iwaura, R., Masuda, M., Hanada, T., & Yase, K. (2001). Internucleobase-interaction-directed self-assembly of nanofibers from homo-and heteroditopic 1, ω-nucleobase bolaamphiphiles. Journal of the American Chemical Society, 123(25), 5947-5955.
    71. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., ... & Geim, A. K. (2006). Raman spectrum of graphene and graphene layers. Physical review letters, 97(18), 187401.
    72. Park, K. H., Kim, B. H., Song, S. H., Kwon, J., Kong, B. S., Kang, K., & Jeon, S. (2012). Exfoliation of non-oxidized graphene flakes for scalable conductive film. Nano letters, 12(6), 2871-2876.
    73. Narayan, R., Lim, J., Jeon, T., Li, D. J., & Kim, S. O. (2017). Perylene tetracarboxylate surfactant assisted liquid phase exfoliation of graphite into graphene nanosheets with facile re-dispersibility in aqueous/organic polar solvents. Carbon, 119, 555-568.
    74. Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature nanotechnology, 8(4), 235-246.
    75. Tuinstra, F., & Koenig, J. L. (1970). Raman spectrum of graphite. The Journal of chemical physics, 53(3), 1126-1130.
    76. Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R. D., ... & Ruoff, R. S. (2009). Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon, 47(1), 145-152.
    77. Pappa, A. M., Karagkiozaki, V., Krol, S., Kassavetis, S., Konstantinou, D., Pitsalidis, C., ... & Logothetidis, S. (2015). Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants. Beilstein journal of nanotechnology, 6(1), 254-262.
    78. Furukawa, M., Yamada, T., Katano, S., Kawai, M., Ogasawara, H., & Nilsson, A. (2007). Geometrical characterization of adenine and guanine on Cu (1 1 0) by NEXAFS, XPS, and DFT calculation. Surface science, 601(23), 5433-5440.
    79. Zhao, X., Zhang, Q., Chen, D., & Lu, P. (2010). Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites. Macromolecules, 43(5), 2357-2363.

    無法下載圖示 全文公開日期 2025/08/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE