簡易檢索 / 詳目顯示

研究生: 曾炫勲
Hsuan-Hsun TSENG
論文名稱: 球磨時間與添加石墨烯、活性炭與奈米碳管對 ZK60 合金儲氫性能之影響
Effect of ball milling time and adding graphene, active carbon,and carbon nanotube on the hydrogen storage performance of ZK60 alloy
指導教授: 丘群
Chun Chiu
口試委員: 林新智
Hsin-Chih Lin
蔡榮庭
Jung-Ting Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 182
中文關鍵詞: 鎂基儲氫合金ZK60 合金高速壓延碳材添加劑高能球磨鎂合金廢料回收
外文關鍵詞: Mg-based hydrogen storage alloy, ZK60 alloy, high-rate rolling, carbon catalyst, high-energy ball milling, Recycling of Magnesium Alloy Scrap
相關次數: 點閱:297下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將高速壓延之 ZK60 合金和 ZK60 合金分別添加石墨烯、
    活性炭與奈米碳管,進行球磨 30、35 和 40 小時,以探討經由塑性
    變形、不同碳材添加劑與不同球磨時間對於鎂基材料儲氫性質之影
    響。
    實驗結果顯示,高速壓延之ZK60 合金經過銑床銑削後,添加石
    墨烯,在球磨 40 小時後所製備而成的粉末儲氫量為 6.6 wt.%,而
    ZK60 合金在相同條件下之儲氫量也為 6.6 wt.%,由此得知在儲氫性
    質上並無明顯差異,其原因為兩者的晶粒尺寸皆為 30 nm。添加石
    墨烯的 ZK60 合金,經過 40 小時的球磨,儲氫量為 6.6 wt.%,添加
    活性炭的 ZK60 合金儲氫量為 4.3 wt.%,而添加奈米碳管的 ZK60 合
    金則為 5.9 wt.%,由此得知在對於 ZK60 合金儲氫性質的催化效果
    上,石墨烯最佳、奈米碳管次之,而活性炭最差,其原因為碳材結
    構的缺陷程度的影響,石墨烯的ID/ IG 值為 1.31,活性炭為 0.99,而
    奈米碳管則為 1.18;石墨烯的活化能為 97 KJ/mol,活性炭為 119
    KJ/mol,而奈米碳管則為 107 KJ/mol。球磨 40 h 的高速壓延之
    ZK60 合金添加石墨烯之儲氫量為 6.6 wt.%,在相同條件下球磨 35 h
    為 6.5 wt.%,而球磨 30h 則為 6.2 wt.%,由此得知球磨 40 h 對於材
    料的儲氫性質上有略為提升,其原因為顆粒尺寸較低,球磨 40 h 為
    1 μm,球磨 35 h 為 7 μm,而球磨 30 h 則為 15 μm。
    經由本研究之製程所製備的ZK60 鎂合金粉末,其儲氫性質與經
    由霧化噴粉製程所製備的 ZK60 鎂合金粉末幾無差異。因此,本研
    究的製程可用於鎂合金廢料於儲氫材料的再利用,達到材料循環利
    用的目標。


    In this study, the ZK60 alloy prepared by high rate rolling were
    separately modified with graphene, activated carbon, and carbon
    nanotubes. The modified were then subjected to ball milling for 30, 35,
    and 40 hours to investigate the effects of plastic deformation, different
    carbon additives, and varying milling durations on the hydrogen storage
    properties of magnesium-based materials.
    The results show the ZK60 alloy plate prepared by high-rate rolling
    and subsequent milling exhibited a hydrogen storage capacity of 6.6 wt.%
    after 40 hours of ball milling with the addition of graphene. Interestingly,
    the hydrogen storage capacity of the ZK60 alloy plate without graphene
    addition was also 6.6 wt.% under the same conditions. This suggests that
    there is no significant difference in hydrogen storage properties between
    the two, which can be attributed to their similar grain sizes of 30 nm.
    Furthermore, the ZK60 alloy with graphene addition exhibited a
    hydrogen storage capacity of 6.6 wt.% after 40 hours of ball milling. In
    comparison, the ZK60 alloy with activated carbon addition had a
    hydrogen storage capacity of 4.3 wt.%, while the ZK60 alloy with carbon
    nanotube addition had a hydrogen storage capacity of 5.9 wt.%. These
    results indicate that graphene has the best catalytic effect on the hydrogen
    storage properties of the ZK60 alloy, followed by carbon nanotubes, and
    activated carbon showed the lowest performance. This can be attributed
    to the varying degrees of carbon material structure defects. ID/IG value of
    1.31 for graphene, 0.99 for activated carbon, and 1.18 for carbon
    nanotubes), its activation energy is 97 KJ/mol compared to 119 KJ/mol
    for activated carbon and 107 KJ/mol for carbon nanotubes. In terms of
    the effect of ball milling duration, the ZK60 alloy with graphene addition
    exhibited a hydrogen storage capacity of 6.6 wt.% after 40 hours of ball
    milling. Under the same conditions, the hydrogen storage capacity was
    6.5 wt.% after 35 hours of ball milling and 6.2 wt.% after 30 hours of ball
    milling. This suggests that a ball milling duration of 40 hours has a better
    effect on the hydrogen storage properties of the material, likely due to the
    smaller particle size. Specifically, the particle size after 40 hours of ball
    milling was 1 μm, 7 μm after 35 hours, and 15 μm after 30 hours.
    The ZK60 magnesium alloy powder prepared using the process in
    this study exhibited comparable hydrogen storage properties to the ZK60
    magnesium alloy powder prepared by atomization and spray deposition.
    Therefore, the process developed in this study can be applied for the
    recycling of magnesium alloy waste into hydrogen storage materials,
    contributing to the goal of material circular economy. Please note that
    while I have provided a translation of the text, there may still be some
    technical terms or specific expressions that may require further review or
    clarification by a domain expert.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XXV 第一章 前言 1 第二章 文獻回顧 3 2.1 氫經濟 3 2.1.1 氫的基本性質 3 2.1.2 氫能源的製造 5 2.1.3 氫能源的儲存 6 2.1.4 氫能源的運輸 8 2.1.5 氫能源的應用 8 2.2 儲氫合金 8 2.2.1 儲氫合金的發展 9 2.2.2 儲氫合金的種類 10 2.3 儲氫合金吸放氫之性質 12 2.3.1 儲氫合金熱力學 12 2.3.2 儲氫合金動力學 15 2.3.3 儲氫合金之其他相關特性概述 16 2.4 鎂基儲氫合金 20 2.4.1 AZ系列合金之儲氫 20 2.4.2 ZK系列合金之儲氫 22 2.5 ZK60儲氫合金之改質方法 25 2.5.1 添加劑效應 25 2.5.2 溢出效應 26 2.5.3 嚴重塑性變形效應 28 2.6 文獻回顧整理 32 第三章 實驗方法 36 3.1 實驗材料 36 3.2 實驗流程 37 3.3 球磨製程 38 3.4 實驗設備 39 3.5 儲氫合金之儲氫性能檢測 42 第四章 實驗結果與討論 46 4.1 高速壓延法對ZK60合金的影響 46 4.2 結合高速壓延法與不同球磨添加物對ZK60合金儲氫特性之影響 49 4.2.1 高速壓延並添加石墨烯 49 4.2.2 高速壓延並添加活性炭 65 4.2.3 高速壓延並添加奈米碳管 80 4.3 原材與不同球磨添加物對儲氫特性之影響 95 4.3.1 原材並添加石墨烯 95 4.3.2 原材並添加活性炭 110 4.3.3 原材並添加奈米碳管 125 4.4 各種粉體性質之比較 140 4.4.1 高速壓延法對ZK60合金儲氫特性之影響 140 4.4.2 不同球磨添加物對ZK60合金儲氫特性之影響 144 4.4.3 不同球磨時間對ZK60合金儲氫特性之影響 148 4.4.4 與其他ZK60儲氫合金相關文獻之比較 151 第五章 結論 153 第六章 未來展望 154 參考文獻 155 附錄 167

    [1] 廖世傑,儲氫技術及應用簡介,工業材料雜誌,民國 91 年。
    [2] 方守獅,董遠達,高容量儲氫材料的最新發展,自然雜誌,民國 90 年。
    [3] 減碳科技:儲氫材料。取自於南臺科技大學化學工程與材料工程,https://scitechvista.nat.gov.tw/Article/c000003/detail?ID=1eb80413-e83f-49af-aa75-5eba6eff3e1b。
    [4] John E. T. Bistline, "Roadmaps to net-zero emissions systems: Emerging insights and modeling challenges," Joule (2021).
    [5] 華健,吳怡萱,再生能源概論,五南圖書出版股份有限公司,(2008) 298.
    [6] R. Chaubey, S. Sahu, O. James, S.Maity, "A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources," Renewable and Sustainable Energy Reviews 23 (2013) 443-462.
    [7] A. Karaca, A.M.M.I. Qureshy, I. Dincer, "An overview and critical assessment of thermochemical hydrogen production methods," Journal of Cleaner Production 385 (2023) 135706.
    [8] A. Cheng, W. Xiao, X. Jiang, X. Ruan, G. He, X. Li, H. Wang, X. Wu, "A partial element stage cut electrochemical hydrogen pump model for hydrogen separation and compression," Separation and Purification Technology 307 (2023) 122790.
    [9] B. Ramprakash, P. Lindblad, J. Eaton-Rye, A. Incharoensakdi, "Current strategies and future perspectives in biological hydrogen production: A review," Renewable and Sustainable Energy Reviews 168 (2022) 112773.
    [10] S. Niaz, T. Manzoor, A.H. Pandith, "Hydrogen storage: Materials, methods and perspectives," Renewable and Sustainable Energy Reviews 50 (2015) 457-469.
    [11] S. Jenne, S. Jana, M. Palanisamy, "Thermal and compressor-driven metal hydride based coupled system for thermal storage, cooling and thermal upgradation," Thermal Science and Engineering Progress 21 (2021) 100800.
    [12] M. Mehrpooya, M. Saedi, A. Allahyarzadeh, S. Ali Mousavi, A. Jarrahian, "Conceptual design and performance evaluation of a novel cryogenic integrated process for extraction of neon and production of liquid hydrogen," Process Safety and Environmental Protection 164 (2022) 228-246.
    [13] R. Chandra Muduli, P. Kale, "Silicon nanostructures for solid-state hydrogen storage: A review," International Journal of Hydrogen Energy 48 (2023) 1401-1439.
    [14] W. Cheng, Y. Cheng, "A techno-economic study of the strategy for hydrogen transport by pipelines in Canada," Journal of Pipeline Science and Engineering 3 (2023) 100112.
    [15] D. Xiang, P. Li, L. Liu, "Concept design, technical performance, and GHG emissions analysis of petroleum coke direct chemical looping hydrogen highly integrated with gasification for methanol production process," Science of Total Environment 838 (2022) 156652.
    [16] J. H. Westbrook, Intermetallic compounds, John Wiley and Sons, Inc., New York, (1967) 187.
    [17] T. Graham, "XVIII. On the absorption and dialytic separation of gases by colloid septa," Philosophical transactions of the Royal Society of London 156 (1866) 399-439.
    [18] H. Zijlstra, "Domain-Wall Processes in SmCo5 Powders," Journal of Applied Physics 41 (1970) 4881-4885.
    [19] 吉成修,水素吸蔵合金: 基礎と応用 (ヘッドライン: 新しい機能性を有する金属材料)。 化学と教育55 (2007) 446-449。
    [20] J. H. N. van Vucht, F. A. Kuijpers and H. C. A. M. Bruning, "Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds," Philips Research Reports 25 (1970) 133.
    [21] M. Okada, T Kuriiwa, A. Kamegawa, H. Takamura, "Role of intermetallics in hydrogen storage materials," Materials Science and Engineering A 329–331 (2002) 305–312.
    [22] V. Kumar, D. R. Roy, "Structure, bonding, stability, electronic, thermodynamic and thermoelectric properties of six different phases of indium nitride," Journal of Materials Science 53 (2018) 8302-8313.
    [23] J. J. G. Willems, K. H. J. Buschow, "From permanent magnets to rechargeable hydride electrodes," Journal of the Less Common Metals 129 (1987) 13-30.
    [24] O. Bernauer, J. Topler, D. Noreus, R. Hempelmann, D. Richter, "Fundamentals and properties of some Ti/Mn based Laves phase hydrides," International Journal of Hydrogen Energy 14 (1989) 187-200.
    [25] J. J. Reilly, R. H. Wiswall, "Formation and properties of iron titanium hydride," Inorganic Chemistry 13 (1974) 218.
    [26] K. Young, J. Koch, T. Ouchi, A. Banik, M. A. Fetcenko, "Study of AB2 alloy electrodes for Ni/MH battery prepared by centrifugal casting and gas atomization," Journal of Alloys and Compounds 496 (2010) 669-677.
    [27] S. Corr, Y. Gotoh, H. Sakaguchi, D. Fruchart, G.-Y Adachi, "The hydrogen confinement in LaNi5 and LaNi5Zr0.1 hydrides using poisonous gases," Journal of Alloys and Compounds 255 (1997) 117-121.
    [28] G. Principi, F. Agresti, A. Maddalena, and S.L. Russo, "The problem of solid state hydrogen storage," Energy 34 (2009) 2087-2091.
    [29] J. Chen, N. Kuriyama, Q. Xu, H. T. Takeshita, and T. Sakai, "Reversible Hydrogen Storage via Titanium-Catalyzed LiAlH4 and Li3AlH6," Journal Physical Chemistry B 105 (2001) 11214–11220.
    [30] A. Züttel, "Materials for hydrogen storage," Materials today 6 (2003) 24-33.
    [31] H. Imamura, I. Kitazawa, Y. Tanabe, Y. Sakata, "Hydrogen storage in carbon/Mg nanocomposites synthesized by ball milling," International Journal of Hydrogen Energy 32 (2007) 2408- 2411.
    [32] M. Martin, C. Gommel, C. Borkhart, and E. Fromm, "Absorption and desorption kinetics of hydrogen storage alloys," Journal of Alloys and Compounds 38 (1996) 193-201.
    [33] M. Martin, C. Gommel, C. Borkhart, E. Fromm, "Absorption and desorption kinetics of hydrogen storage alloys," Journal of Alloys and Compounds 238 (1996) 193-201.
    [34] 林宗賢,"Al置換量對 LaNi5-xAlx 合金吸放氫性能及微結構之影響研究,"碩士,材料科學工程學系,國立清華大學,新竹市,1999。
    [35] T. Haraki, N. Inomata, H. Uchida, "Hydrogen desorption kinetics of hydrides of LaNi4.5Al0.5, LaNi4.5Mn0.5, and LaNi2.5Co2.5," Journal of Alloys and Compounds 293-295 (1999) 407-411.
    [36] G. Sandrock, "A panoramic overview of hydrogen storage alloys from a gas reaction point of view," Journal of Alloys and Compounds 293-295 (1999) 877-888.
    [37] C. Lundin, and F. Lynch, "A detailed analysis of the hydriding characteristics of LaNi5," Annual Intersociety Energy Conversion and Engineering Conference (1975) 1380-1385.
    [38] Reilly Jr, J. J. and R.H. Wiswall Jr, "Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4," Inorganic Chemistry 7 (1968) 2254-2256.
    [39] G. Sandrock, "Development of low cost nickel-rare earth hydrides for hydrogen storage," Hydrogen energy system (1978) 353-393.
    [40] G. D. Sandrock, E. L. Huston, "Engineering properties of metal hydrides," Journal of the Less-Common Metals 74 (1980) 435-443.
    [41] G. D. Sandrock, "The Metallurgy and Production of Rechargeable Hydrides," Hydrides for Energy Storage (1978) 2254-2256.
    [42] Q. A. Zhang, Y. Q. Lei, X. G. Yang, Y. L. Du, Q. D. Wang, "Effects of annealing treatment on phase structures, hydrogen absorption–desorption characteristics and electrochemical properties of a V3TiNi0.56Hf0.24Mn0.15Cr0.1 alloy," Journal of Alloys and Compounds 305 (2000) 125-129.
    [43] J. N. Armor, "Environmental catalysis," Applied Catalysis B: Environmental 1 (1992) 221-256.
    [44] H. Okamoto, M. E. Schlesinger, E. M. Mueller, "Alloy Phase Diagrams" ASM International 3 (1992).
    [45] A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou, C. Savall, X. Feaugas, "Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel," Acta Materialia 60 (2012) 6814-6828.
    [46] G. Sandrock, G. Thomas, "The IEA/DOE/SNL on-line hydride databases," Applied Physics A 72 (2001) 153-155.
    [47] 林賢科,"以機械合金法合成 Mg2Ni/Ag 複合粉體及其儲氫性質之研究,"碩士,材料科學工程學系,私立逢甲大學,臺中市,2006。
    [48] 徐子傑,"球磨添加銀、鈷、鋁對ZK60合金吸放氫性能之影響,"碩士,材料科學工程學系,私立逢甲大學,臺中市,2014。
    [49] 李灝,"球磨添加物對ZK60合金吸氫量與循環特性之影響,"碩士,材料科學工程學系,私立逢甲大學,臺中市,2013。
    [50] A. Zaluska, L. Zaluski, J. O. Ström-Olsen, "Nanocrystalline magnesium for hydrogen storage," Journal of Alloys and Compounds 288 (1999) 217-225.
    [51] L. Zaluski, A. Zaluska, J. O. Ström-Olsen, "Nanocrystalline metal hydrides," Journal of Alloys and Compounds 253-254 (1997) 70-79.
    [52] T. Spassov, U. Köster, "Hydrogenation of amorphous and nanocrystalline Mg-based alloys," Journal of Alloys and Compounds 287 (1999) 243-250.
    [53] J. Graetz, J. Reilly, G. Sandrock, J. Johnson, W. Zhou, J. Wegrzyn, "Aluminum Hydride, AlH3, As a Hydrogen Storage Compound," The Winemls, Metuls & Muteriuls Society (2006) 57-63.
    [54] J. -C. Crivello, T. Nobuki, T. Kuji, "Improvement of Mg–Al alloys for hydrogen storage applications," International Journal of hydrogen energy 34 (2009) 1937-1943.
    [55] A. Andreasen, "Hydrogenation properties of Mg–Al alloys," International Journal of Hydrogen Energy 33 (2008) 7489-7497.
    [56] H. Westengen, "Magnesium: Alloying," Encyclopedia of Materials: Science and Technology 9 (2001) 4739-4743.
    [57] J. -F. Nie, "Precipitation and Hardening in Magnesium Alloys," Metallurgical and Materials Transactions A 43 (2012) 3891-3939.
    [58] T. Bhattacharjee, C. L. Mendis, T. T. Sasaki, T. Ohkubo, K. Hono, "Effect of Zr addition on the precipitation in Mg–Zn-based alloy," Scripta Mater 67 (2012) 967-970.
    [59] 何昆哲,"等徑轉角擠形與研磨添加物對 ZK60 合金儲氫特性之影響,"碩士,材料科學工程學系,私立逢甲大學,臺中市,2010。
    [60] 王昱翔,"霧化噴粉製ZK60儲氫合金之顯微組織與性能研究,"碩士,材料科學工程學系,國立臺灣大學,臺北市,2022。
    [61] V. M. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok, "The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg–4.95 wt.% Zn–0.71 wt.% Zr (ZK60) alloy," Acta Mater 52 (2004) 405-414.
    [62] A. Grill, J. Horky, A. Panigrahi, G. Krexner, M. Zehetbauer, "Long-term hydrogen storage in Mg and ZK60 after Severe Plastic Deformation," International Journal of Hydrogen Energy 40 (2015) 17144-17152.
    [63] G. Bruzzone, G. Costa, M. Ferretti, G.L. Olcese, "Hydrogen storage in Mg51Zn20," International Journal of Hydrogen Energy 8 (1983) 459-461.
    [64] T. A. Webb, C. J. Webb, A. K. Dahle, E. M. Gray, "In-situ neutron powder diffraction study of Mg–Zn alloys during hydrogen cycling," International Journal of Hydrogen Energy 40 (2015) 8106-8109.
    [65] Y. E. Sinelnikova, N. F. Uvarov, "Synthesis of nanocrystalline magnesium oxide by thermolysis of magnesium citrate," Mendeleev Communications 32 (2022) 697-699.
    [66] K. Pareek, Q. Zhang, R. Rohan, Z. Yunfeng, and Hansong Cheng, "Hydrogen physisorption in ionic solid compounds with exposed metal cations at room temperature," RSC Advances 4 (2014) 33905-33910.
    [67] Z. G. Huang, Z. P. Guo, A. Calka, D. Wexler, H. K. Liu, "Effects of carbon black, graphite and carbon nanotube additives on hydrogen storage properties of magnesium," Journal of Alloys and Compounds 427 (2007) 94-100.
    [68] C. Shang, Z. X. Guo, K.F. Aguey-Zinsou, "Materials challenges for hydrogen storage," Journal of the European Ceramic Society 28 (2008) 1467-1473.
    [69] H. Imamura, S. Tabata, N. Shigetomi, Y. Takesue, "Composites for hydrogen storage by mechanical grinding of graphite carbon and magnesium," Journal of Alloys and Compounds 330-332 (2002) 579-583.
    [70] A. D. Rud, A. M. Lakhnik, V. G. Ivanchenko, V. N. Uvarov, A. A. Shkola, V. A. Dekhtyarenko, L. I. Ivaschuk, N. I. Kuskova, "Hydrogen storage of the Mg–C composites," International Journal of Hydrogen Energy 33 (2008) 1310-1316.
    [71] T. Spassov, Z. Zlatanova, M. Spassova, S. Todorova, "Hydrogen sorption properties of ball-milled Mg–C nanocomposites," International Journal of Hydrogen Energy 35 (2010) 10396-10403.
    [72] G. Xia, Y. Tan, X. Chen, D. Sun, Z. Guo, H. Liu, L. Ouyang, M. Zhu, X. Yu, "Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene," Adv. Mater 27 (2015) 5981-5988.
    [73] E. Ruse, M. Buzaglo, S. Pevzner, I. Pri-Bar, V.M. Skripnyuk, E. Rabkin, O. Regev, "Tuning Mg hydriding kinetics with nanocarbons, " Journal of Alloys and Compounds 725 (2017) 616-622.
    [74] J. Cui, J. Liu, H. Wang, L. Ouyang, D. Sun, M. Zhu, X. Yao, "Mg–TM (TM: Ti, Nb, V, Co, Mo or Ni) core–shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism," Journal of Materials Chemistry A 2 (2014) 9645-9655.
    [75] K. Nobuhara, H. Kasai, W.A. Diño, H. Nakanishi, "H2 dissociative adsorption on Mg, Ti, Ni, Pd and La Surfaces," Surface Science 566-568 (2004) 703-707.
    [76] E. Hadjixenophontos, M. Roussel, T. Sato, A. Weigel, P. Stender, S.-i. Orimo, G. Schmitz, "Imaging the hydrogenation of Mg thin films,” International Journal of Hydrogen Energy 42 (2017) 22411-22416.
    [77] J. Dufour, J. Huot, "Rapid activation, enhanced hydrogen sorption kinetics and air resistance in laminated Mg–Pd 2.5at.%," Journal of Alloys and Compounds 439 (2007) L5-L7.
    [78] J. Du, Z. Lan, H. Zhang, S. Lü, H. Liu, J. Guo, "Catalytic enhanced hydrogen storage properties of Mg-based alloy by the addition of reduced graphene oxide supported V2O3 nanocomposite," Journal of Alloys and Compounds 802 (2019) 660-667.
    [79] T. Liu, C. Qin, M. Zhu, Y. Cao, H. Shen, X. Li, "Synthesis and hydrogen storage properties of Mg–La–Al nanoparticles," Journal of Power Sources 219 (2012) 100-105.
    [80] W. C. Conner, Jr. , J. L. Falconer, "Spillover in heterogeneous catalysis," Chemistry Rev 95 (1995) 759-788.
    [81] G.M. Psofogiannakis, G.E. Froudakis, "Fundamental studies and perceptions on the spillover mechanism for hydrogen storage," Chemistry Commun (Camb) 47 (2011) 7933-7943.
    [82] S. Pevzner, I. Pri-Bar, I. Lutzky, E. Ben-Yehuda, E. Ruse, O. Regev, "Carbon Allotropes Accelerate Hydrogenation via Spillover Mechanism," The Journal of Physical Chemistry C 118 (2014) 27164-27169.
    [83] C. Suryanarayana, "Mechanical alloying and milling," Progress in Materials Science 46 (2001) 1-184.
    [84] A. Zolriasatein, A. Shokuhfar, F. Safari, N. Abdi, "Comparative study of SPEX and planetary milling methods for the fabrication of complex metallic alloy nanoparticles," Micro & Nano Letters 13 (2018) 448-451.
    [85] A. A. C. Asselli, D. R. Leiva, J. Huot, M. Kawasaki, T. G. Langdon, W.J. Botta, "Effects of equal-channel angular pressing and accumulative roll-bonding on hydrogen storage properties of a commercial ZK60 magnesium alloy," International Journal of Hydrogen Energy 40 (2015) 16971-16976.
    [86] V. M. Segal, "Materials processing by simple shear," Materials Science and Engineering A 197 (1995) 157-164.
    [87] A. Revesz, M. Gajdics, E. Schafler, M. Calizzi, L. Pasquini, "Dehydrogenation-hydrogenation characteristics of nanocrystalline Mg2Ni powders compacted by high-pressure torsion," Journal of Alloys and Compounds 702 (2017) 84-91.
    [88] A. Grill, J. Horky, A. Panigrahi, G. Krexner, "Long-term hydrogen storage in Mg and ZK60 after Severe Plastic Deformation," International Journal of Hydrogen Energy 40 (2015) 17144-17152.
    [89] 劉育承,"AZ91D鎂合金切屑廢料作為儲氫材料之儲氫性質與改質,"碩士,機械工程系,國立臺灣科技大學,臺北市,2016。
    [90] Y. Zhou, Q. Bao, L. A. L. Tang, Y. Zhong, K. P. Loh, "Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties," Chemistry of Materials 21 (2009) 2950-2956.
    [91] S. -P. Zhang, H. -O. Song, "Supramolecular graphene oxide-alkylamine hybrid materials: variation of dispersibility and improvement of thermal stability," New Journal of Chemistry 36 (2012) 1733-1738.
    [92] 林子斌,"球磨添加奈米碳管、石墨烯、銀、鈀與有機添加劑對 ZK60合金儲氫性能之影響,"碩士,材料科學工程學系,私立逢甲大學,臺中市,2018。
    [93] 王燦為,"球磨添加銀、鈀、鋯之 ZK60 合金吸放氫性能之評估研究,"碩士,材料科學工程學系,私立逢甲大學,臺中市,2015。

    無法下載圖示 全文公開日期 2025/08/10 (校內網路)
    全文公開日期 2025/08/10 (校外網路)
    全文公開日期 2025/08/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE