簡易檢索 / 詳目顯示

研究生: 劉師沛
SHIH-PEI LIU
論文名稱: 封閉共振管內非線性氣體振動行為之三維數值模擬
Numeric investigation of the 3-D nonlinear resonant behaviors of gas oscillation of in a closed tube
指導教授: 蘇裕軒
Yu-Hsuan Su
口試委員: 林顯群
Sheam-Chyun Lin
陳國聲
Kuo-Shen Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 98
中文關鍵詞: 三維軸對稱非線性駐波共振管
外文關鍵詞: 3-D axis-symmetric, nonlinear standing wave, resonator
相關次數: 點閱:191下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 早期封閉管駐波共振不管是實驗還是數值計算都是研究低頻共振系統。主要是一般
    機械傳動所能產生的頻率極限在200Hz 左右。這些機械系統所占空間大, 因此轉向使用
    高頻振動系統來縮小系統空間, 且封閉管駐波共振裝置在實驗上, 對於要量測管內物理
    量的變化, 以目前的技術來說還無法達成, 因此最佳的選擇便是使用數值模擬來監測管
    內所有的物理量的變化。藉由數值模擬來探討非線性帶給內部流場之行為, 因此本文研
    究驅動的活塞頻率為4000 Hz 、管長為0.0435 m , 內徑為0.026 m 的半波駐波共振裝
    置, 假設三維軸對稱並考慮有黏性之空氣, 以及流場內的能量因壁面絕熱條件無法傳至
    大氣, 分別觀察近似共振頻率對非線性流場造成的影響以及倍數成長的共振頻率對非線
    性流場造成的影響。

    當操作操作頻率接近共振頻率時, 震波的產生越明顯, 因此非線性效應及黏滯效應將
    導致波形呈現上下不對稱, 而流場內的壓力和速度將會有相位差存在, 但壓力與溫度則
    為同相。流體黏滯性的影響導致邊界上產生速度梯度, 因此邊界層內將有剪應力發生, 將
    動能消耗成熱能, 而這些熱量將累積在邊界層內, 導致邊界層上的溫度和速度變化。溫
    度邊界層的發展因壁面假設絕熱的關係, 使得溫度發生最大的地方在壁面上。由於模擬
    結果得的現像, 將可對於往後熱聲裝置內的疊平板擺放的位置提供一個良好的參考依據
    去設計。


    Traditionally, the study of standing wave resonance inside a closed tube is
    focussed on the low frequency resonance system (generally below 200 Hz), which is limited by the mechanical transmission mechanisms used. In order to reduce the space taken by the mechanical transmission mechanisms, high frequency resonance system is favored. In addition, it is very difficult to measure the variations of physical quantities inside the resonance tube with current technologies available.
    However, this presents no difficulties in using numerical simulation to monitor
    the variations of physical quantities inside the tube. In this work, the resonance behaviors inside a closed tube (0.0435 m in length, 0.026 m inside diameter) driven by a reciprocating piston at a frequency of 4000 Hz are studied. The tube is assumed to be axis-symmetric and the walls are assumed to be adiabatic. The effects of detuning and frequency multiplication on the nonlinear resonance are investigated.

    Closed to the exact resonance, the pressure waveforms are significantly distorted and become asymmetric. Formation of shock waves can be clearly observed. Due to the steep velocity gradient inside the velocity boundary layer, significant shear stresses occurs near the velocity boundary layer and kinetic energy is dissipated and converted into heat. This heat will accumulate inside the velocity boundary layer due to the adiabatic boundary conditions. This, in turn, will lead to the growth of thermal boundary layer and result in a very thick thermal boundary layer.

    The results of the simulations can provide the necessary guidelines for the selection of the proper locations of the stack plates inside a thermoacoustic resonance tube.

    1 導論1 1.1 前言及研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 微型化駐波共振裝置. . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 理論分析6 2.1 有限振幅傳遞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 共振與非共振下影響非線性與消散性. . . . . . . . . . . . . . . . . . . 8 2.3 封閉管之非線性駐波方程式. . . . . . . . . . . . . . . . . . . . . . . 11 3 數值模擬16 3.1 網格與幾何模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 邊界條件. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 統御方程式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 求解流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5 收斂條件. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.6 數值驗證. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4 結果與討論40 4.1 近似共振頻率對非線性的影響. . . . . . . . . . . . . . . . . . . . . . 40 4.2 不同頻率對非線性的影響. . . . . . . . . . . . . . . . . . . . . . . . . 62 5 結論與未來建議81 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2 未來建議. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

    [1] R. Betchov ”Nonlinear oscillations of a column of gas”, Physics of Fluids ,1,pp.205−212,1958
    [2] W. Chester ”Resonant oscillations in closed tubes”, Journal of Fluid Mechan-
    ics ,18, pp.44−64,1964
    [3] Alan B. Coppens and James V. Sanders”Finite Amplitude Standing Waves
    in Rigid Walled Tubes”, Journal Society of America ,43, pp.516−529,1968
    [4] A. L. Van Buren ”Mathematical model for non-linear standing waves in a
    tube”, Journal of Sound and Vibration 42(3), pp. 273-280,1975
    [5] Yurii A. Ilinskii ”Nonlinear standing waves in an acoustical resonator”, Journal of the Acoustic Society of America 104(5),pp. 2664-2674,1998
    [6] Y.Chun,Y.Kim ”Numerical analysis for nonlinear resonant oscillations in
    closed tubes”, Journal of the Acoustic Society of America 104(5), pp. 2664-
    2674,1998
    [7] Elvira-Sequra ”A finite element algorithm for the study of nonlinear standing waves”, Journal of the Acoustic Society of America 108(6), pp. 2765-2447,2000
    [8] Christian Vanhille ”Numerical model for nonlinear standing waves and weak
    shocks in thermoviscous fluids”, Journal of the Acoustic Society of America
    109(6), pp. 2660-2677,1998
    [9] Ning Fangli ”Two-dimensional Model and Numerical Method for Nonlinear
    Standing Waves in Axisymmetric Resonators1”, CMCE, pp. 68-71,2010
    [10] Rayleigh, Lord, ”The Theory of Sound”, London : Macmillan,II,2nd end, pp.301, 1901
    [11] Pierce, Allan D., ”Acoustics : an introduction to its physical principles and applications ”, New York : McGraw-Hill Book Co, pp. 524, 1981
    [12] Pierce, Allan D., ”Acoustics : an introduction to its physical principles and applications ”, New York : McGraw-Hill Book Co, pp. 553, 1981
    [13] George Emanuel, ”Bulk viscosity in the Navier Stokes equations”, Interna-
    tional Journal of Engineering Science,36, pp. 1313-1323,1998
    [14] D.E. Weston, ”The theory of the propagation of plane sound waves in tubes”,
    Proceedings of the Physical Society London,66, pp. 695-709,1953

    QR CODE