簡易檢索 / 詳目顯示

研究生: 吳庭雅
吳庭雅
論文名稱: 樁型亞波長共振地震超材料結構之縮尺試驗可行性研究
Feasibility study of lab-scale tests of pile-type subwavelength resonant seismic metamaterial structures
指導教授: 汪向榮
Shiang-Jung Wang
口試委員: 陳東陽
Tung-Yang Chen
林子剛
Tzu-Kang Lin
吳東諭
Tung-Yu Wu
陳家漢
Chia-Han Chen
汪向榮
Shiang-Jung Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 180
中文關鍵詞: 地震超材料樁型亞波長共振頻率帶隙頻散分析實驗室尺度試驗數值模擬
外文關鍵詞: seismic metamaterial, pile-type, subwavelength resonance, frequency band gap, dispersion analysis, laboratory-scale test, numerical simulation
相關次數: 點閱:316下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地震超材料為近年在地震工程中所提出的抗震新概念,有別於傳統隔減震設計,其裝設於結構物外部並主要利用局部共振之消能機制,將特定頻率之地震波傳能量衰減以避免結構物受到損壞,而此特定頻率區間稱為帶隙。基於前人研究初步成果,本研究為進一步瞭解樁型地震超材料結構之波傳衰減效益及縮尺效應之影響,首先以數值模型進行單元晶格掃頻分析,並規劃以不同縮尺因子於實驗室進行試驗,最後
    以數值分析進行驗證。
    樁型地震超材料之單元晶格組成由內而外分別為混凝土圓柱、橡膠及砂土,由前人研究得知橡膠楊氏模數為影響帶隙頻率範圍之主要設計參數,故利用壓縮試驗求得合理之橡膠楊氏模數,再以有限元素分析軟體 COMSOL 針對單元晶格模型所得之頻散曲線獲得其帶隙頻率範圍。試驗利用簡諧波方式輸入面波以預期產生縱波,並利用加速度感測器量測在通過樁型地震超材料結構前後之輸入波及輸出波加速度,為避免試驗中之波傳反射,邊界設置泡棉以模擬低反射邊界,使波傳能量經由泡棉吸收減少反射。將真實試驗量測之輸入波輸入至有限元素分析軟體 COMSOL 之數值模型,在土體呈現線彈性行為的理想假設下,初步驗證數值分析結果的合理性與代表性。
    經由試驗結果得知,於距離砂土表面與泡棉較遠點位之量測反應較具可信度,其受干擾程度較其他量測點位為少。除了試驗結果之頻率反應函數,亦藉由時間域之極值與方均根值比較,驗證頻散曲線所呈現之頻率帶隙。由試驗與數值分析結果比較可知,兩者之間有一致之趨勢以及相當的吻合程度。後續研究將進一步改善本試驗規劃不盡完善之處,如油壓致動器動態容量提升、砂土表面沉陷因應對策、以其他較合
    適材料取代泡棉模擬低反射邊界、增加加速度與位移量測點位等;此外除了考慮縱波輸入外,亦會進行剪力波與表面波輸入試驗,進一步驗證數值分析結果的合理性與代表性。


    Metamaterial structures composed of artificially designed unit cells of diverse geometry, composition, and periodic arrangement often possess counterintuitive properties and exhibit quite different behavior from structures consisting of natural materials. Thus, they are theoretically capable of manipulating wave propagation and energy flow. Since seismic waves usually possess lower frequency content compared with electromagnetic, optical, and acoustic waves, a considerably larger scale is
    required for the design of seismic metamaterial structures based on Bragg scattering. Therefore, local resonance that is theoretically attributed to negative effective mass rather than to Bragg scattering might be a more practically feasible method of blocking, deflecting, redirecting, or attenuating seismic waves in earthquake engineering.
    In this study, a subwavelength resonant metamaterial consisting of a concrete cylinder coated with rubber and surrounding sand was devised to be periodically arranged in a two-dimensional plane as a pile-type barrier against seismic waves. For feasibility of laboratory testing, seismic metamaterial specimens with assumed dimension scale factors of one-tenth and one-twentieth were designed and fabricated based on their dispersion analysis result. All the materials were assumed to ideally possess nominal, linearly elastic, and continuous properties except that the Young’s modulus of the rubber material was obtained through performing compression tests on a rubber pad specimen. A series of laboratory-scale tests was conducted using a steel container filled with sand embedded with the specimens, on which harmonic plane waves with various excitation frequencies were imposed to generate primary waves. Foam layers were attached to the insides of the steel container in order to reduce the effect of wave reflection during tests as much as possible. Several accelerometers were installed at different plane locations and depths of the sand before and after the wave passed through the seismic metamaterial structures.
    By appropriately considering the real material properties as well as appropriate boundaries and supports for numerical simulation, and precluding some unreliable test measurements that may be attributed to non-uniform sinking of sand and uncertainty of foam layers, the experimental transmission spectra and several other author-defined attenuation and response ratios were found to almost coincide with the dispersion analysis result. The attenuation performance in the theoretical omnidirectional frequency band gap presented in the dispersion curve was significantly better than that in other frequency ranges. Within the theoretical omnidirectional frequency band gap, the seismic metamaterial structure, the one-tenth scaled one in particular, performed better than pure sand, as was expected. The time-domain finite element simulation result also showed an acceptable level of agreement with the experimental result. In the future test studies, some imperfections in the methodology should still be further improved, including the dynamic capacity of hydraulic actuators, non-uniform sinking of sand, use of materials that would better lessen the effect of wave reflection, and more distributed measurement points. Furthermore, in addition to primary bulk waves, shear bulk waves and surface waves will be adopted as the experimental excitation waves.

    第一章 緒論 1.1 研究背景與動機 1.2 研究目的 1.3 研究內容 第二章 文獻回顧 2.1 地震超材料發展 2.2 超材料研究回顧 2.2.1 基礎型地震超材料 2.2.2 屏障型地震超材料 2.2.3 參數分析 2.2.4 實驗規劃 第三章 單元晶格掃頻分析與排數分析 3.1 COMSOL軟體介紹 3.2 樁型單元晶格模型設定及分析 3.2.1 模型之基本設定及邊界條件 3.2.2 元素種類及網格尺寸 3.2.3 單元晶格掃頻分析 3.2.4 縮尺樁型地震超材料單元晶格掃頻分析 3.3 時間域排數分析 3.3.1 模型假設 3.3.2 排數分析 第四章 縮尺試驗模型與規劃 4.1 試驗目的 4.2 試驗設計 4.3 試驗試體 4.3.1 樁型地震超材料單元製作 4.3.2 橡膠楊氏模數 4.4 試驗配置 4.4.1 量測儀器 4.4.2 試驗項目設計 4.4.3 試驗程序 4.5 縮尺試驗結果 4.5.1 數據分析 4.5.2 誤差探討 4.5.2.1 鋼製容器共振頻率 4.5.2.2 致動器性能 4.5.2.3 純砂掃頻試驗 4.5.3 樁型地震超材料結構掃頻試驗 4.5.3.1 縮尺因子1/10掃頻試驗 4.5.3.2 縮尺因子1/20掃頻試驗 第五章 數值模擬與分析 5.1 縮尺試驗時間域分析 5.1.1 模型假設 5.1.2 試驗數值模擬 5.1.2.1 縮尺試驗數值模擬結果 5.1.2.2 純砂試驗數值模擬結果 5.2 討論與小結 5.2.1 數值模擬與試驗結果探討 5.2.2 小結 第六章 結論與未來展望 6.1 結論 6.2 未來展望

    C.H. Lu, K.Y. Liu, and K.C. Chang, “Seismic performance of bridges with rubber bearings: lessons learnt from the 1999 Chi-Chi Taiwan earthquake,” Journal of the Chinese Institute of Engineers, vol. 34, p. 889-904, 2011.
    汪向榮、游忠翰、林旺春,斜面滾動隔震技術,科學發展(Science Development)第519期,第12~16頁,2016。
    Oiles Corporation., FPS Sliding Pendulum Type Seismic Isolation Device Friction Pendulum System
    https://www.oiles.co.jp/en/menshin/building/menshin/products/fps/
    J.S. Hwang, “Seismic Design of Structures with Viscous Damper,” International Training Programs for Seismic Design of Building Structures Hosted by National Center of Research on Earthquake Engineering, 2002.
    K.C. Chang, T.T. Soong, M.L. Lai, and E.J. Nielsen, “Viscoelastic Dampers as Energy Dissipation Devices for Seismic Applications,” Earthquake Spectra, vol. 9, no. 3, p.371-387, 1993.
    K.C. Tsai, H.W. Chen, C.P. Hong, and Y.F. Su, “Design of Steel Triangular Plate Energy Absorbers for Seismic-Resistant Construction,” Earthquake Spectra, vol. 9, no. 3, p. 505-528, 1993.
    K.C. Tsai, J.W. Lai, Y.C. Hwang, S.L. Lin, and C.H. Weng, “Research and Application of Double-Core Buckling Restrained Braces in Taiwan,” World Conference on Earthquake Engineering, no. 2179, 2004.
    簡廷宇、黃瑜琛、吳逸軒、李冠慧、翁崇寧、陳東陽,新型態外部隔減震 技術-地震超材料之設計與分析,中國土木水利工程學刊,31 卷 4 期,第395~410頁,2019。
    V.G. Veselago, “The electrodynamics of substances with simultaneously negative values of and μ,” Soviet Physics Uspekhi, vol. 10, no. 4, p. 509-514 ,1968.
    J.B. Pendry, A. Holden, W. Stewart, and I. Youngs, “Extremely low frequency lasmons in metallic mesostructures,” Physical Review Letters, vol. 76, no. 25, p. 4773-4776, 1996.
    J.B. Pendry, A.J. Holden, D.J. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, p. 2075-2084, 1999.
    J.B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, vol. 85, no. 18, p. 3966-3969, 2000.
    羅川琇,樁型地震超材料與共振筒單元之可行性研究,國立台灣大學土木工程學系碩士論文,2021.
    Y. Chen, F. Qian, F. Scarpa, L. Zuo, and X. Zhuang, “Harnessing multi-layered soil to design seismic metamaterials with ultralow frequency band gaps,” Materials and Design, vol. 175, no. 107813, 2019.
    Z. Shi, Z. Cheng, H. Xiang, “Seismic isolation foundations with effective attenuation zones,” Soil Dynamics and Earthquake Engineering, vol. 57, p.143 – 151, 2014.
    W. Witarto, “Periodic materials for seismic base isolation: theory and applications to small modular reactors,”PhD diss., University of Houston, 2018.
    S. Krödel, N. Thomé, and C. Daraio, “Wide band-gap seismic metastructures,” Extreme Mechanics Letters, vol. 4, p. 111-117, 2015.
    Q. Du, Y. Zeng, G. Huang, H. Yang, “Elastic metamaterial-based seismic shield for both Lamb and surface waves,” AIP Advances, vol. 7, no. 075015, 2017.
    M. Miniaci, A. Krushynska, F. Bosia, N. M. Pugno, “Large scale mechanical metamaterials as seismic shields,” New Journal of Physics, vol. 18, no. 083041, 2016.
    Y. Achaoui, T. Antonakakis, S. Brule, R. Craster, S. Enoch, S. Guenneau, “Clamped seismic metamaterials: ultra-low frequency stop bands,” New Journal of Physics, vol. 19, no. 063022, 2017.
    李宇軒,有限元素法於樁型超材料之數值模擬,國立台灣大學土木工程學系碩士論文,2020。
    F., Bloch, “Über die quantenmechanik der elektronen in kristallgittern,” Zeitschrift Für Physik, vol. 52, no. 7-8, p.555-600 ,1929.
    簡廷宇,具帶隙效應之層狀基礎於隔減震之應用,國立成功大學土木工程學系碩士論文,2018。
    Q. Geng, S. Zhu, K.P. Chong, “Issues in design of one-dimensional metamaterials for seismic protection,” Soil Dynamics and Earthquake Engineering, vol. 107, p.264-278, 2018.
    J. Huang, Z. Shi, “Attenuation zones of periodic pile barriers and its application in vibration reduction for plane wave,” Journal of Sound and Vibration, vol. 332, p.4423-4439, 2013.
    Y. Zeng, Y. Xu, K. Deng, P. Peng, H. Yang, M. Muzamil, Q. Du, “A broadband seismic metamaterial plate with simple structure and easy realization,” Journal of Applied Physics, vol.125, no. 224901, 2019
    M.P. Nicoreac, B.R. Pârv, M. Petrina, “Similitude theory and applications,” Acta Technica Napocensis: Civil Engineering & Architecture, vol 53, no.1, 2010
    S. Brûlé, E. Javelaud, S. Enoch, and S. Guenneau, “Experiments on seismic metamaterials: molding surface waves,” Physical review letters, vol. 112, no. 13, p.133901, 2014.
    S. Brûlé, E. Javelaud, S. Enoch, and S. Guenneau, “Flat lens effect on seismic wave propagation in the subsoil,” Scientific reports, vol. 7, no. 18066, 2017.
    國家地震工程研究中心, NCREE 244.41 ACTURATOR PERFORMANCE , 1995
    B.M., Das, Advanced Soil Mechanics, Taylor and Francis, Philadelphia, Pa, 1997.
    P.B., Lindley, "Engineering design with natural rubber", NZ Technical Bulletin. The Malaysian Rubber Producer's Research Association, Hertfordshire, England.
    伯馬快速型雙液環氧樹脂接著劑,https://www.perma.com.tw/zh-tw/。

    無法下載圖示 全文公開日期 2026/01/06 (校內網路)
    全文公開日期 2026/01/06 (校外網路)
    全文公開日期 2026/01/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE