簡易檢索 / 詳目顯示

研究生: 周伯融
Bo-Rung Chou
論文名稱: 一組規則節理岩盤承受建物荷重之數值模擬與試驗對比細化
Numerical Simulation of Foundation on Regular Jointed Rock and Experinental Refinement
指導教授: 陳志南
Chee-Nan Chen
口試委員: 陳堯中
none
陳立憲
none
林志森
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 227
中文關鍵詞: 數值模式節理等壓力分佈位移
外文關鍵詞: Numerical Models, Joints, isostress distribution, displacement
相關次數: 點閱:173下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為利用數值分析探討一組規則節理岩盤承受建物荷重之應力傳播與變形分佈,根據Gaziev & Erlikhman (1971)對節理岩盤進行之基礎與節理配置試驗,利用UDEC軟體建立數值模式,考量相同建物建在好中壞三種不同岩盤之情況下,得到應力傳播與變形分佈,並與Gaziev & Erlikhman 試驗壓力分佈趨勢加以對比細化,及加上定量分佈說明。研究範圍包含一組規則節理岩盤之七種不同傾角變化(0°、15°、30°、45°、60°、75°、90°)、三種不同岩盤與基礎勁性相互作用變化、三種節理勁度比變化等等,分析結果在應力方面提出Δσ1/q=(0.9、0.7、0.5、0.3)之等壓線分佈範圍(深度、寬度)量化數據,在位移方面就垂直與水平等位移歸納節理錯動分佈模式。
    本研究得到幾項重要特點,首先以數值分析結果得到應力分佈圖並與Gaziev & Erlikhman 試驗定性圖表對比,第二分析歸納節理上位移錯動分佈模式,第三由Gaziev & Erlikhman 試驗圖表提出定量說明。


    The paper discusses the stress and displacement distribution in regular jointed rock subjected to foundation loading by numerical analysis. Gazeive and Erlikhamn had experimented the foundation and joint configuration for the joint rock in 1971. Based upon their experiment qualitative results and by utilizing the code UDEC to establish numerical mode. The stress propagation and displacement distribution under the situation of the same building to build in varies rock are analyzed. Seven angles of rock joint dip ranging 0, 15, 30, 45, 60, 75 and 90 degrees are selected. Three interactions between the structure and its rock foundation and three ratio of normal and shear stiffness are analyzed, The results of analysis include the equalized stress, Δσ1/q=(0.9, 0.7, 0.5, 0.3) contours and joint dislocation distribution pattern both on the equalized vertical and horizontal displacement contours.
    The study has shown the important features. The first is to compare the numerical stress results with Gazeive and Erlikhamn experiment qualitative charts. The second is to analyze the displacement distribution and summarize the joint dislocation distribution pattern. The third is to propose the quantitative refinements to Gazeive and Erlikhamn experiment qualitative charts.

    論文摘要 I ABSTRACT III 誌 謝 IV 目錄 V 圖目錄 X 表目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究內容 3 第二章 文獻回顧 5 2.1 節理岩體之力學行為 6 2.1.1 完整岩石材料力學行為 6 2.1.2 節理岩體的破壞強度 6 2.1.3 節理勁度 8 2.2 節理性質對應力傳遞、變形分佈相關實驗 11 2.2.1 基礎承載於下方岩盤之應力傳遞行為 11 2.2.2 節理岩盤中應力傳遞分析 13 2.2.3 節理密度對岩體強度之影響 14 2.2.4 節理組數對岩體強度之影響 14 2.3 岩體破壞模式 15 2.4 岩石基礎破壞模式 18 2.5 淺基礎於岩石之破壞模式 21 2.6 岩石邊坡破壞模式 22 第三章 分析方法說明 25 3.1 UDEC程式的發展與理論背景 26 3.2 UDEC之行為模式 29 3.2.1 塊體之組合律模式 29 3.2.2 節理之組合律模式 31 3.3 基本術語定義 34 3.4 分析流程簡介 37 3.4.1 分析架構及輸入指令說明 37 3.4.2 分析步驟 40 3.5 建置二維數值分析模式 40 3.5.1 建立數值分析模式 40 3.5.2 建立水平地表數值分析網格 41 3.5.3 建立傾斜地表數值分析網格 42 3.5.4 岩盤參數 43 3.5.5 節理參數 47 3.5.6 建物基礎參數 48 第四章 地表水平之規則節理岩盤(α=45°)承受建物荷重之應力傳播與位移分佈 51 4.1 水平地表均質地層(未含節理)承受建物荷重(q=40t/m2)之應力傳播與位移分佈 53 4.1.1 利用UDEC分析無節理岩盤承受建物荷重之應力傳播 53 4.1.2 利用UDEC分析無節理岩盤承受建物荷重之位移分佈 56 4.2 參數敏感度分析(水平地表含一組規則α=45°承受建物荷重為例) 57 4.3 相同建物(EC=25GPa)建在一組規則節理(α=45°)好壞不同岩盤之應力傳播比較 71 4.3.1 UDEC數值模擬與Gaziev及Erlikhman試驗之驗證 72 4.3.2 水平地表含一組規則節理(α=45°)承受建物荷重q=40t/m2之Δσ1等壓線量化分佈探討 75 4.3.3 相同建物建於好、中、壞岩盤承受q=40t/m2之Δσ1等壓線分佈套疊比較 79 4.3.4 相同建物建於好、中、壞岩盤承受q=40t/m2之Δσ1等壓線之傳遞深度與寬度量化探討 83 4.4 相同建物(EC=25GPa)建在一組規則節理(α=45°)好壞不同岩盤承受q=40t/m2之位移分佈比較 90 4.4.1 水平地表含一組規則節理(α=45°)承受建物荷重q=40t/m2於不同岩性之ΔY等位移線分佈探討 90 4.4.2 水平地表含一組規則節理(α=45°)承受建物荷重q=40t/m2於不同岩性之ΔX等位移線分佈探討 96 4.4.3 基礎勁性相同座落於好、中、壞岩盤之基礎沉陷量探討 100 4.4.4 一組規則節理(α=45°)歸納之沉陷槽錯動分佈模式與水平位移錯動分佈模式 101 第五章 一組規則節理在不同傾角情況下岩盤承載之應力傳播與位移分佈探討 107 5.1 一組規則節理傾角變化之岩盤承受建物荷重後之應力傳播數值分析 107 5.1.1 一組規則節理(α=0°)受建物荷重之Δσ1等壓線量化分佈探討 108 5.1.2 一組規則節理(α=15°)受建物荷重之Δσ1等壓線量化分佈探討 112 5.1.3 一組規則節理(α=30°)受建物荷重之Δσ1等壓線量化分佈探討 115 5.1.4 一組規則節理(α=60°)受建物荷重之Δσ1等壓線量化分佈探討 121 5.1.5 一組規則節理(α=75°)受建物荷重之Δσ1等壓線量化分佈探討 126 5.1.6 一組規則節理(α=90°)受建物荷重之Δσ1等壓線量化分佈探討 129 5.2 一組規則節理傾角變化之岩盤承受相同建物荷重之Δσ1等壓線綜合比較 132 5.2.1 岩盤較好情況節理傾角改變承載之Δσ1分佈比較(ER/EC=1/ 1) 132 5.2.2 好中壞三種岩盤(ER/EC=1/ 1、1/ 5、1/10)節理傾角變化之Δσ1傳遞深度(Zp、Zpmax)之比較 136 5.3 一組規則節理傾角變化之岩盤承受相同建物荷重之ΔY等位移分佈綜合比較 141 5.3.1 一組規則節理傾角變化之岩盤承受相同建物荷重之ΔY等位移分佈探討(ER/EC=1/ 1情況) 142 5.3.2 傾角變化與節理上錯動長度(Δm、Δc)之關係(ER/EC=1/ 1情況) 146 5.3.3 一組規則節理傾角變化之岩盤承受相同建物荷重之基礎沉陷量與沉陷分佈探討(ER/EC=1/ 1、1/5、1/10情況) 149 5.4 改變節理勁度比之應力傳播與位移分佈探討 153 5.4.1 改變節理勁度比與Δσ1應力傳播之影響(kn/ks=5/1、40/1,係ks=100MPa/m為固定值) 154 5.4.2 改變節理勁度比與基礎沉陷量之影響(kn/ks=5/1、10/1、40/1,係ks=100MPa/m為固定值) 158 第六章 傾斜地表含一組規則節理岩盤之應力傳播與位移分佈探討 161 6.1 傾斜地表含一組規則節理(α=45°)壓力傳播與位移分佈探討 162 6.1.1 一組規則節理(α=45°)之Δ1等壓線分佈探討(ER/EC=1/1、1/5、1/10情況) 163 6.1.2 一組規則節理 (α=45°)於不同地表(水平、傾斜)之Δ1壓力傳播分佈量化探討 166 6.1.3 基礎勁性固定於岩盤性質不同對一組規則節理(α=45°)之垂直等位移線分佈探討(ER/EC=1/1、1/5、1/10情況) 170 6.2 傾斜地表涵蓋一組規則節理傾角變化之岩盤承受相同建物荷重之壓力傳播探討 174 6.2.1 一組規則節理傾角變化與Δσ1分佈圖形之影響(ER/EC=1/1情況) 175 6.2.2 一組規則節理傾角變化與Δσ1傳遞深度Zpmax之關係(ER/EC=1/1情況) 178 6.3 傾斜地表涵蓋一組規則節理傾角變化之岩盤承受相同建物荷重之位移分佈探討 180 6.3.1 傾斜地表涵蓋一組規則節理傾角變化之岩盤承受相同建物之ΔY等位移分佈(ER/EC=1/1情況) 181 6.3.2 傾斜地表涵蓋一組規則節理傾角變化之位移量關係(ER/EC=1/1情況) 182 第七章 結論與建議 187 7.1 結論 188 7.2 建議 196 參考文獻 197 附錄A地表水平節理(α=45°)之應力傳播與位移分佈圖 201 附錄B地表傾斜節理傾角變化之應力傳播與位移分佈圖 205

    1. 黃兆龍,「混凝土性質與行為」,第525∼531頁,台北,詹氏書局,(2002)。
    2. 陳坤同、施國欽,「台灣地區變質岩動彈性初步研究」,岩盤工程研討會,第189 ~ 198頁,中壢中央大學,(1994)。
    3. 中國土木水利工程學會混凝土工程委員會,「混凝土工程設計規 範與解說」,台北,中國土木水利工程學會,(2004)。
    4. 楊長義與黃燦輝,「人工規則節理岩體單軸壓力強度之研究」,中國土木水利工程學刊,第七卷,第四期,第395 ~ 408頁,中國土木水利工程學會,(1995)。
    5. 廖志忠,潘以文,林志平等人,「整合性岩盤工址調查案例」,岩盤工程研討會論文集,台南,(2006)。
    6. 鄭富書、朱家德、黃燦輝,「台灣一些軟弱岩石的工程性質」,岩盤工程研討會,第259 ~ 267頁,中壢中央大學,(1994)。
    7. 楊長義,「模擬規則節理岩體強度與變形性之研究」,博士論文,國立台灣大學土木工程研究所,台北,(1992)。
    8. 鄭銘富,「不同單位重粒料混凝土力學性質之研究」,碩士論文,國立台灣科技大學營建工程研究所,台北,(2002)。
    9. 呂文帝,「以UDEC模擬分析淺層礫石隧道開挖之適用性探討」,碩士論文,國立台灣工業技術學院營建工程技術研究所,台北,(1994)。
    10. 林啟玉,「橫向等向性岩層承受地表條形荷重所衍生應力增量之 數值推估」,碩士論文,中原大學土木工程研究所,中壢,(2002)。
    11. 郭俊何,「順向坡開發之工程穩定性探討」,碩士論文,國立台灣科技大學營建工程研究所,台北,(2000)。
    12. 李瑋埼,「利用UDEC探討節理岩體之破壞行為」,碩士論文,私立淡江大學,(1999)。
    13. 江國豐,「應用不連續變形分析法於順向岩坡穩定分析之探討」,碩士論文,國立高雄第一科技大學營建工程所,(2003)。
    14. 陳志南、葉瀚仁、吳宗達,「含節理之岩盤承受載重之應力分佈初步探討」,岩盤工程研討會,第191 ~ 199頁,國立台北科技大學,(2008)。
    15. Barton, N. R., Bandis, S. and Bakhtar, K., “Strength Deformation and Conductivity Coupling of Rock Joints,” Int.J.Rock. Mech.Min.Sci & Geomech.Abstr, 22, 121~40, (1985).
    16. Bandis, S., Lumsden, A. C. and Barton, N. R., ”Foundamentals of Rock Joints Deformation,” International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, Vol.20, No.6, pp.249~268, Pergamon Press, (1983).
    17. Duncan, C. Wyllie., ”Foundations on Rock,” E&FNSPON, (1992).
    18. Franklin, J. A. and Dusseault, M. B., “Rock Engineering Applications,” McGraw-Hill International Editions, (1992).
    19. Gaziev, E. G. and Erlikhman, S. A.,”Stresses and Strains in Anisotropic Rock Foundation(Model Studies),” Rock Fracture, Proc. Int. Symp. Rock Mech ISRM, Nancy, France. Report II-1, (1971).
    20. Goodman, R. E.,”The Deformability of Joints Deformation of the In-Situ Modulus of Deformation of Rock, ”ASTM, STP 477, pp.174~196, (1970).
    21. Goodman, R. E., Introduction to Rock Mechanics, Second Ed, Chap.4&6, pp.101~140&179~220, John Wiley&Sons, (1989).
    22. Jurgenson, L.,”The Application of Theories of Elasticity and Plasticity to Foundation Problems,” in Contribution to Soil Mechanics, 1925-1940, Boston Society of Civil Engineers, Boston, (1934).
    23. Kulhawy, F. H., ”Geomechanical Model for Rock Foundation Settlement,” Geotech eng div ASCE 104(GT)221-227, (1978).
    24. Kulitilake, P. H., Ucpirti, S. W., Wang, H. S., Radberg, G. and Stephansson, O., ”Use of the Distinct Element Method to Perform Stress Analysis in Rock with Non-persistent Joints and to Study the Effect of Joint Geometry Parameters on the Strength and Deformability of Rock Masses,” Rock Mechanics and Rock Engineering 25(4), pp. 253~274, (1992).
    25. McCarthy, D. F., ”Essentials of Soil Mechanics and Foundations,” sixth edition. Prentice Hall, (2002).
    26. Yoshinaka, R. and Yamabe, T., ”Joint Stiffness and the Deformation Behaviour of Discontinuous Rock,” Internation Journal of Rock Mechanics and Mining Science Geomechanics Abstracts, Vol.23, No.1, pp. 19~28, Perga-mon Press , (1986).
    27. Hoek, E. and Bray, J.W. Rock Slope Engineering,3rd Ed. The Instiution of Mining and Metallurgy, Loddon (1981).
    28. Pande GN, Beer G, Williams JR. Numerical methods in rock mechanics. New York:Wiliey; (1990).
    29. Gerrard CM. Elastic models of rock masses having one, two and three sets of joints. Int J Rock Mech Min Sci Geomesch Abstr,( 1982).

    30. Ku C-Y. Modeling of Jointed Rock Masses based on the numerical manifold method. Doctoral dissertation, Department of Civil and Environmental Engineering. University of Pittsburgh, (2001).

    QR CODE