簡易檢索 / 詳目顯示

研究生: 劉品賢
Pin-Hsien Liu
論文名稱: 波谷切換控制策略 LLC 諧振轉換器
Development of LLC Converter with Valley Switching Control Strategy
指導教授: 林景源
Jing-Yuan Lin
邱煌仁
Huang-Jen Chiu
口試委員: 龐敏熙
Man-Hay PONG
林景源
Jing-Yuan Lin
邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
王建民
Jian-Min Wang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 143
中文關鍵詞: LLC諧振轉換器波谷切換混合控制寬範圍設計輕載策略直流轉換器
外文關鍵詞: LLC resonant converter, valley switching, hybrid control, wide ouput voltage range, light-load strategy, DC-DC converter
相關次數: 點閱:309下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以傳統 LLC 諧振電路為架構,並提出新式波谷切換控制策略應用於寬範圍電壓輸出規格與輕載策略。有別於傳統變頻控制策略,本論文提出之波谷切換策略使電路操作區間加入一次側開關元件汲極-源極間電容與激磁電感之諧振區間,進而阻擋主諧振槽之能量傳遞,達到低電壓輸出與輕載之目的。由於所加入之諧振區間一次側開關與本體二極體皆為截止狀態。因此,此方法將大大降低了有別於傳統相移控制策略環流損問題。除此之外,由於波谷切換之特性,一次側主開關將於所選擇之波谷點開啟,致使 LLC 諧振電路切換損及切換頻率下降。相較於傳統突衝控制策略,可以解決硬切、高頻切換問題。並增加電壓調節率、降低輸出電壓漣波,提升電力品質。
    本論文將針對波谷切換控制策略以時間為維度進行分析,除了表示正規化開關導通時間 φon 與電壓增益之曲線外,亦分析諧振槽參數對電路電壓應力、操作頻率之影響。最終,提出完整之輕載應用與寬範圍應用之設計流程,並分別完成一台全橋 LLC 諧振式轉換器規格為 600W/48V,與一台半橋 LLC 諧振式轉換器規格為輸入 100-240 VAC,輸出5/9/15/20 VDC,最高功率65W,以確保本論文廣泛應用上之可靠性。


    The dissertation uses the traditional LLC resonant converter as the architecture, and proposes a novel control strategy for wide output voltage application and light-load application. Different from the traditional PFM control strategy, the VSC control strategy proposed in this dissertation makes the magnetizing inductance resonate with the drain-source capacitance of the primary switchings. Thereby, the converter is able to block the energy transfer and achieves strait specifications. Due to the resonant interval for magnetizing inductance and drain-source capacitance, the primary side switchings have no circulating loss. The efficiency will be thus improved compared with the phase-shifted control strategy. In addition, with VSC control strategy, the primary switchings achieves the characteristic of LVS. Compared with the traditional burst control strategy, It can help converter to ease the hard-switching and regulation problems, reduce the output voltage ripple, and improve the power quality.
    The dissertation depicts the VSC control strategy with the time-domain analysis. In addition, the gain curve is also described with normalized pulse-width φon. The influence of voltage stress on components and operating frequency will be discussed according to different designed parameter. Finally, a completed design process for light-load applications and wide output voltage applications are proposed. In the implement, a full-bridge LLC resonant converter with a DC input of 400-VDC, an output voltage of 48-VDC, an output current of 12.5-A, and a half-bridge LLC resonant converter with a AC input of 100~240-VAC, an output voltage of 5/9/15/20-VDC, an output current of 3-A were constructed for the prototype converters.

    目 錄 摘 要 ................... i Abstract .............. ii 誌 謝 .............. iii 目 錄 ................ v 圖索引 ............. viii 表索引 .............. xiii 第一章 緒論........... 1 1.1 研究動機與目的 ......................... 1 1.2 內文編排方式 .......................... 5 第二章 LLC 轉換器常用策略及問題 ...................................... 7 2.1 LLC 傳統變頻控制策略輕載問題 ..................................... 7 2.1.1 突衝模式控制策略介紹及問題 ................................ 12 2.2 LLC 傳統變頻策略寬範圍問題...................................... 14 2.2.1 一次側相移控制(PS-PSC)策略介紹及問題 ............ 18 2.2.2 二次側相移控制(SS-PSC)策略介紹及問題 ............ 21 2.3 LLC 波谷切換控制策略說明與優缺點比較 ..................... 24 第三章 LLC 波谷切換控制策略 .................................... 28 3.1 無回灌電流之波谷切換動作原理分析 ............................. 28 3.2 無回灌電流之波谷切換增益曲線推導 ............................. 37 3.3 有回灌電流之波谷切換動作原理分析 ............................. 50 3.4 有回灌電流之波谷切換增益曲線 ..................................... 60 第四章 波谷切換控制策略設計流程 .................................................... 62 4.1 滿載輕載應用設計流程 ..................................................... 62 4.1.1 電路電氣規格制訂 .................................................... 62 4.1.2 變壓器設計 ................................................................ 63 4.1.3 諧振槽設計 ................................................................ 66 4.1.4 功率開關選用 ............................................................ 73 4.1.5 整流二極體選用 ........................................................ 73 4.1.6 輸出濾波電容設計 .................................................... 74 4.2 寬範圍應用設計流程 ......................................................... 75 4.2.1 電路電氣規格制訂 .................................................... 76 4.2.2 諧振槽設計 ................................................................ 76 4.2.3 變壓器設計 ................................................................ 82 4.2.4 功率開關選用 ............................................................ 83 4.2.5 同步整流開關選用 .................................................... 84 4.2.6 輸出濾波電容設計 .................................................... 84 第五章 數位控制實現 ............................................................ 86 5.1 策略流程規劃 ....................................................... 86 5.2 韌體規劃 ....................................................... 87 5.3 模式切換 ................................................... 91 第六章 實驗波形及數據 .............................................. 93 6.1 滿載輕載應用 ............................................. 93 6.1.1 實驗規格與量測儀器 ................................................ 93 6.1.2 實驗波形 ............................................................. 96 6.1.3 實驗數據 ............................................................. 103 6.2 寬範圍應用 .......................................... 106 6.2.1 實驗規格與量測儀器 .............................................. 107 6.2.2 實驗波形 ................................................................ 109 6.2.3 實驗數據 ................................................................ 116 第七章 結論與未來展望 .......................................... 119 7.1 結論 .............................................................. 119 7.2 未來展望 ............................................ 119 參考文獻 ................................................................ 121

    參考文獻
    [1] China increased electricity generation annually from 2000 to 2020 (no date) Homepage - U.S. Energy Information Administration (EIA).Available at:https://www.eia.gov/todayinenergy/detail.php?id=53959 (Accessed: December 9, 2022).
    [2] Renewables became the second-most prevalent U.S. electricity source in 2020 (no date) Homepage - U.S. Energy Information Administration (EIA). Available at:https://www.eia.gov/todayinenergy/detail.php?id=50622(Accessed: December 9, 2022).
    [3] Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX%3A32013R0801&from=EN (Accessed: December 9, 2022).
    [4] 2022 年降低通胀法 (2022) Wikipedia. Wikimedia Foundation. Available at: https://zh.wikipedia.org/zh-tw/2022%E5%B9%B4%E9%99%8D%E4%BD%8E%E9%80%9A%E8%83%80%E6%B3%95 (Accessed: December 9, 2022).
    [5] IEA, Global energy efficiency-related investment by scenario, 2015-2022, IEA, Paris https://www.iea.org/data-and-statistics/charts/global-energy-efficiency-related-investment-by-scenario-2015-2022, IEA. Licence: CC BY 4.0
    [6] USB Power Delivery (no date). Available at: https://usb.org/sites/default/files/D2T2-1%20-%20USB%20Power%20Delivery.pdf (Accessed: December 9, 2022).
    [7] Huang, H., 2010. Designing an LLC Resonant Half-Bridge Power Converter. [online] power.ti.com. Available at:<https://www.ti.com/seclit/ml/slup263/slup263.pdf> [Accessed 15 September 2022].
    [8] J. Liu, J. Zhang, T. Q. Zheng and J. Yang, "A Modified Gain Model and the Corresponding Design Method for an LLC Resonant Converter," in IEEE Transactions on Power Electronics, vol. 32, no.9, pp. 6716-6727, Sept. 2017, doi: 10.1109/TPEL.2016.2623418.
    [9] B. -H. Lee, M. -Y. Kim, C. -E. Kim, K. -B. Park and G. -W. Moon, "Analysis of LLC Resonant Converter considering effects of parasitic components," INTELEC 2009 - 31st International Telecommunications Energy Conference, 2009, pp. 1-6, doi:10.1109/INTLEC.2009.5351740.
    [10] Bin Wang, Xiaoni Xin, Stone Wu, Hongyang Wu, and Jianping Ying, “Analysis and Implementation of LLC Burst Mode for Light LoadEfficiency Improvement”, in IEEE 2009 Applied Power Electronics Conference and Exposition, 2009, pp. 58-64.
    [11] Yungtaek Jang, and Jovanovic, M.M., “Light-Load EfficiencyOptimization Method”, IEEE Transactions on Power Electronics, vol. 25, no. 1, pp. 67-74, Aug. 2010
    [12] W. Feng, F. C. Lee, P. Mattavelli, D. Huang and C. Prasantanakorn, "LLC resonant converter burst mode control with constant burst time and optimal switching pattern," 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2011, pp. 6-12, doi: 10.1109/APEC.2011.5744568.
    [13] J. Liu, J. Zhang, T. Q. Zheng and J. Yang, "A Modified Gain Model and the Corresponding Design Method for an LLC Resonant Converter," in IEEE Transactions on Power Electronics, vol. 32, no.9, pp. 6716-6727, Sept. 2017, doi: 10.1109/TPEL.2016.2623418.
    [14] X. Fang, H. Hu, Z. J. Shen and I. Batarseh, "Operation Mode Analysis and Peak Gain Approximation of the LLC Resonant Converter," in IEEE Transactions on Power Electronics, vol. 27, no. 4, pp. 1985-1995, April 2012, doi: 10.1109/TPEL.2011.2168545.
    [15] X. Fang et al., "Efficiency-Oriented Optimal Design of the LLC Resonant Converter Based on Peak Gain Placement," in IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2285-2296, May 2013, doi: 10.1109/TPEL.2012.2211895.
    [16] Y. Shen, H. Wang, F. Blaabjerg, X. Sun and X. Li, "Analytical model for LLC resonant converter with variable duty-cycle control," 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 2016, pp.1-7, doi: 10.1109/ECCE.2016.7854882.
    [17] RF Wireless Vendors and Resources | RF Wireless World. (2022). Retrieved 16 September 2022, from https://www.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-ofFull-bridge-converter.html
    [18] RF Wireless Vendors and Resources | RF Wireless World. (2022). Retrieved 16 September 2022, from https://www.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-ofHalf-bridge-converter.html
    [19] H. Wu, T. Mu, X. Gao and Y. Xing, "A Secondary-Side Phase-Shift-Controlled LLC Resonant Converter With Reduced Conduction Loss at Normal Operation for Hold-Up Time Compensation Application," in IEEE Transactions on Power Electronics, vol. 30, no. 10, pp. 5352-5357, Oct. 2015, doi: 10.1109/TPEL.2015.2418786.
    [20] H. Wu, Y. Lu, T. Mu, and Y. Xing, “A family of soft-switching DC-DC converters based on a phase-shift-controlled active boost rectifier,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 657–667, Feb. 2015.
    [21] D. Maksimovic and S. Cuk, "Switching converters with wide DC conversion range," in IEEE Transactions on Power Electronics, vol.6, no. 1, pp. 151-157, Jan. 1991, doi: 10.1109/63.65013.
    [22] J. Park et al., "Quasi-Resonant (QR) Controller With Adaptive Switching Frequency Reduction Scheme for Flyback Converter," in IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3571-3581, June 2016, doi: 10.1109/TIE.2016.2523931.
    [23] C. Wang, S. Xu, W. Shen, S. Lu and W. Sun, "A Single-Switched High-Switching-Frequency Quasi-Resonant Flyback Converter," in IEEE Transactions on Power Electronics, vol. 34, no. 9, pp. 8775-8786, Sept. 2019, doi: 10.1109/TPEL.2018.2884937.
    [24] H. -P. Park and J. -H. Jung, "Design Methodology of Quasi-Resonant Flyback Converter With a Divided Resonant Capacitor," in IEEE Transactions on Industrial Electronics, vol. 68, no. 11, pp. 10796-10805, Nov. 2021, doi: 10.1109/TIE.2020.3029481.
    [25] Q. Qian et al., "High Precision Primary Side Regulation Constant Voltage Control Method for Primary and Secondary Resonant Active Clamp Flyback Converter," in IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, doi:10.1109/JESTPE.2022.3181809.
    [26] R. Watson, F. C. Lee and G. C. Hua, "Utilization of an active-clamp circuit to achieve soft switching in flyback converters," in IEEE Transactions on Power Electronics, vol. 11, no. 1, pp. 162-169, Jan. 1996, doi: 10.1109/63.484429.
    [27] D. Christen and J. Biela, "Analytical Switching Loss Modeling Based on Datasheet Parameters for mosfets in a Half-Bridge," in IEEE Transactions on Power Electronics, vol. 34, no. 4, pp. 3700-3710, April 2019, doi: 10.1109/TPEL.2018.2851068.
    [28] Zhanyou, S. H. A., & Hongtao, M. A. (2011, September). Derivation and Validation of Formula to Select the High-Frequency Transformer Magnetic Core Based on AP Method. 基於 AP 法選擇高頻變壓器磁芯公式推導及驗證. Retrieved October 2022, from https://u.dianyuan.com/upload/space/2013/06/22/1371881815-838608.pdf
    [29] TDK, Mn-Zn Ferrite Material Characteristics datasheet, 2016.
    [30] Series - rubycon. (n.d.). Retrieved October 27, 2022, from https://www.rubycon.co.jp/wp-content/uploads/catalog-aluminum/YXJ.pdf
    [31] Der-626 - 65 W USB PD 3.0 with 3.3 V-21 v PPS power supply using Innoswitch3 Pro Powigan and mine-cap: Power integrations, inc.. (no date) DER-626 - 65 W USB PD 3.0 with 3.3 V-21 V PPS Power Supply Using InnoSwitch3 Pro PowiGaN and MinE-CAP | Power Integrations, Inc. Available at: https://www.power.com/design-support/design-examples/der-626-65-w-usb-pd-3-3pt3-v-21-v-pps-power-supply-using-innoswitch3-pro-powigan-and-mine-cap (Accessed: December 2, 2022).
    [32] Ya Liu, “High Efficiency Optimization of LLC Resonant Converter for Wide Load Range,” Master thesis, VA: Virginia Polytechnic Institute and State University, 2007.
    [33] Bo Yang, F. C. Lee, A. J. Zhang and Guisong Huang, “LLC resonant converter for front end DC/DC conversion,” in Proc. APEC ,2002, pp. 1108-1112.
    [34] Z. Fang, S. Duan, C. Chen, X. Chen and J. Zhang, “Optimal design method for LLC resonant converter with wide range output voltage,” in Proc. 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2013, pp.2106-2111.
    [35] K.-H. Liu and F. C. Y. Lee, “Zero-voltage switching technique in DC/DC converters,” in Proc. in IEEE Transactions on Power Electronics, July 1990, pp. 293-304.
    [36] Hwa-Pyeong Park, Jee-Hoon Jung, “PWM and PFM Hybrid Control Method for LLC Resonant Converters in High Switching Frequency Operation,” IEEE Transactions on Industrial Electronics, vol.64, no.1, pp.253-263, Jan. 2017.
    [37] J. Yamamoto and T. Zaitsu, S. Abe and T. Ninomiya, “PFM and PWM Hybrid controlled LLC converter,” in Proc. 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), 2014, pp. 177-182.
    [38] C. Yang, T. Liang, K. Chen, J. Li and J. Lee, “LLC resonant converter controller with novel light load control,” in Proc. 2014 International Power Electronics and Application Conference and Exposition, 2014, pp. 131-135.
    [39] B. Wang, X. Xin, S. Wu, H. Wu and J. Ying, “Analysis and Implementation of LLC Burst Mode for Light Load Efficiency Improvement,” 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, 2009, pp. 58-64.
    [40] S. De Simone, C. Adragna, C. Spini and G. Gattavari, “Design-oriented steady-state analysis of LLC resonant converters based on FHA,” in Proc. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006., Taormina, 2006, pp. 200-207.
    [41] Texas Instruments, “TMS320F28004x Microcontrollers Technical Reference Manual”, Datasheet, Nov 2015.
    [42] 吳義利,「切換式電源轉換器原理與實用設計(實例設計導向)」,文笙書局股份有限公司,2012 年。
    [43] 李思毅,應用於直流微電網之三相三階式串聯-串聯諧振雙向直流轉換器,民國108 年 7 月。
    [44] 陳愷德,具分數圈變壓器之氮化鎵串聯諧振轉換器,民國 110 年8 月。
    [45] 徐永隆,具動態載波相移脈寬調變之三相六階飛馳電容功率因數修正器,民國110 年5 月。

    無法下載圖示 全文公開日期 2028/05/04 (校內網路)
    全文公開日期 2028/05/04 (校外網路)
    全文公開日期 2028/05/04 (國家圖書館:臺灣博碩士論文系統)
    QR CODE