簡易檢索 / 詳目顯示

研究生: 高明賢
Ming-Sein Gao
論文名稱: 分子動力學模擬單晶銅不同剪切方位及析出物效應在極低溫下的剪切行為研究
The Shearing Behavior Research of Single Crystal Copper on Different Shear Orientation and Effects of Precipitates at Extremely Low Temperature by Molecular Dynamics Simulation(MD)
指導教授: 林原慶
Yuan-Ching Lin  
口試委員: 陳宗明
Zong-Ming Chen
卓育賢
Yu-Hsien Cho
蘇裕軒
Yu-Hsuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 244
中文關鍵詞: 分子動力學刃差排螺旋差排交滑差排環析出物
外文關鍵詞: Molecular dynamics, edge dislocations, screw dislocations, cross slip, dislocation loop, precipitates
相關次數: 點閱:159下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用分子動力學模擬單晶銅極低溫狀態下的剪切行為,並且探討析出物對塑性變形行為的影響。針對不同的剪切晶面與方向、作用速度、析出物大小及距離探討其塑變行為。銅塊材使用嵌入式(EAM)勢能函數建構其模型,利用剛性邊界的移動方式使材料晶體結構產生塑性變形。本論文所探討的內容可分為兩部分:(1)針對ModeⅡ及ModeⅢ進行材料機械性質的研究,(2)析出物對ModeⅡ及ModeⅢ剪切方式機制的影響。剪切過程中,針對刃差排、雙晶變形、差排堆積、交滑及差排環等材料微觀結構之缺陷作深入探討,並利用剪力關係加以分析。
    模擬結果顯示,ModeⅡ剪切含析出物的晶體比無析出物者之剪切力高。其中,以(101)[101 ̅]的剪切行為的剪切力震盪最大,其次為(111)[1 ̅10]與(001)[100]的剪切,故(101)[101 ̅]剪切過程中受到析出物影響最大;而材料含多個析出物時,隨著析出物間距愈大,其對差排移動所構成的阻礙相對較小,因此在差排遭遇析出物的瞬間剪力值不會有明顯的提升;但當析出物間距愈小時,其差排所需的驅動力要愈大才能使越過障礙物。故析出物的分佈越緻密時,材料的塑變應力則越大。在ModeⅢ剪切時,FCC晶體結構會以{111}劈裂面產生脆性劈裂破壞之形貌呈現。


    In this thesis, mechanical properties and shear behavior of the single-crystal copper were simulated at low extremely temperature by molecular dynamics(MD), and those effects of precipitates on plastic behavior were discussed. Besides, plastic deformation behavior for different shear planes, orientations, moving rates, precipitate size and distance were also discussed. The Cu blocks were described by the EAM potential function to build up the model;the plastic deformation of the lattice structure of the material were produced by the moving rigid boundary. This thesis is separated into two part:(i) mechanical properties of materials of modeⅡ and modeⅢ, and (ii) the shear effects of precipitates of modeⅡ and modeⅢ. During shear processes, microstructure defects such as edge dislocations, twinning deformation, dislocation piling up, cross slip and dislocation loop were discussed and analyzed with the relationship of shear force.
    Results show that the shear stress for the crystal containing precipitates was higher than the crystal without precipitates for modeⅡ. Additionally, the shear force in (101)[10-1]was the largest, following was in (111)[-110] and (001)[100], It can be concluded that the shear process in (101)[10-1] was mostly affected by the precipitates. When containing a number of precipitates is contained, resistance of dislocation slip decrease with increasing distance of precipitates;For this reason, the instant shear stress was not enhanced obviously when the precipitates is encountered. However, with a decreasing spacing between precipitates, a higher driving force was needed to cross obstacles. Hence, as more dense precipitates existed in materials, the plastic shear stress was higher, The shear behavior in modeⅢ shows that the FCC crystal has {111} cleavage planes of brittle failure of the feature.

    摘要 I Abstract III 誌謝 V 目錄 VI 表索引 IX 圖索引 X 第一章 緒論 1 1.1 研究動機及目的 1 1.2 分子動力學文獻回顧 4 1.3 差排發展文獻回顧 6 1.4 析出物強化的發展文獻回顧 9 第二章 分子動力學基礎理論 12 2.1 分子動力學的基本假設 12 2.2 勢能函數 13 2.3 運動方程式與演算法 16 2.4 Verlet 表列法 20 2.5 無因次化 21 2.6 Centrosymmetry參數 21 2.7 溫度場之評估 23 第三章 模擬步驟與模型建立 33 3.1 模擬步驟 33 3.1.1 初始設定(Intitial condition) 33 3.1.2 平衡鬆弛(Equilibration) 35 3.1.3 動態模擬(Production) 37 第四章 結果與討論 42 4.1 單晶銅剪切之塑性變形行為分析 42 4.1.1 單晶銅(111)晶面受ModeⅡ、ModeⅢ剪切作用及析出物的影響 42 4.1.1.1 ModeⅡ剪切行為與析出物之交互作用 42 4.1.1.1.1 不含析出物之單晶銅(111)[1 ̅10]ModeⅡ剪切行為分析 42 4.1.1.1.2 含析出物之單晶銅(111)[1 ̅10]ModeⅡ剪切行為分析 60 4.1.1.2 ModeⅢ剪切與析出物之交互作用 75 4.1.1.2.1 不含析出物之單晶銅(111)[1 ̅10]ModeⅢ剪切行為分析 75 4.1.1.2.2 含析出物之單晶銅(111)[1 ̅10]ModeⅢ剪切行為分析 85 4.1.2 單晶銅(101)晶面受ModeⅡ、ModeⅢ剪切作用及析出物的影響 95 4.1.2.1 ModeⅡ剪切行為與析出物之交互作用 95 4.1.2.1.1 不含析出物之單晶銅(101)[101 ̅]ModeⅡ剪切行為分析 95 4.1.2.1.2 含析出物之單晶銅(101)[101 ̅]ModeⅡ剪切行為分析 103 4.1.2.2 ModeⅢ剪切行為與析出物之交互作用 118 4.1.2.2.1 不含析出物之單晶銅(101)[1 ̅01]ModeⅢ剪切行為分析 118 4.1.2.2.2 含析出物之單晶銅(101)[1 ̅01]ModeⅢ剪切行為分析 126 4.1.3 單晶銅(001)晶面受ModeⅡ、ModeⅢ剪切作用及析出物的影響 133 4.1.3.1 ModeⅡ剪切行為與析出物之交互作用 133 4.1.3.1.1 不含析出物之單晶銅(001)[100]ModeⅡ剪切行為分析 133 4.1.3.1.2 含析出物之單晶銅(001)[100]ModeⅡ剪切行為分析 146 4.1.3.2 ModeⅢ剪切行為與析出物之交互作用 156 4.1.3.2.1 不含析出物之單晶銅(001)[1 ̅00]ModeⅢ剪切行為分析 156 4.1.3.2.2 含析出物之單晶銅(001)[1 ̅00]ModeⅢ剪切行為分析 166 4.1.4 有、無析出物受ModeⅡ剪切對銅塊材之影響 174 4.1.5 有、無析出物受ModeⅢ剪切對銅塊材之影響 180 4.2 析出物尺寸對ModeⅡ剪切行為的影響 184 4.3 不同ModeⅡ剪切速率對含析出物單晶銅塑變之影響 191 4.4 析出物分佈與數量對ModeⅡ剪切行為之影響 199 4.4.1 析出物間距對單晶銅材之影響 199 4.4.2 析出物分佈形態與數量對銅塊材之影響 210 第五章 結論與建議 216 5.1 結論 216 5.2 未來研究方向與建議 218 參考文獻 219 作者簡介 224

    1.Nicholas Metropolis, ArianNa W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller and Edward Teller, “Equation of State Calculations by Fast Computing Machines,” J. chem. phys., Vol.21, No.6, pp.1087-1092(1953).
    2.J. H. Irving and J. G. Kirkwood, “The Statistical Mechanical Theory of Hydrodynamics,” J. chem. phys., Vol.18, No.6, pp. 817-829 (1950).
    3.Loup Verlet, “Computer Experiment on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev., Vol.159, No. 1, pp. 98-103 (1967).
    4.B. Quentrec and C. Brot, “New Method for Neighbors in Molecular Dynamics Computations,” J. comput. phys., Vol. 13, pp. 430-432 (1973).
    5.D. C. Rapaport, “Large-Scale Molecular Dynamics Simulation Using Vector and Parallel Computers,” Comput. phys. Rep., Vol. 9, pp. 1-53(1988).
    6.Madeleine Meyer and Vallilis Pontikis, “Computer Simulation in Material Science: Interatomic Potentials, Simulation Techniques and Applications,” Kluwer Academic Publishers, USA, (1991).
    7.A. M. Kosevich, “Dynamical Theory of Dislocations,” Soviet Phys. Usp., Vol. 7, No. 6,pp. 579-609(1964).
    8.A. H. Cottrell, “Theory of Dislocations,” Prog. Met. Phys., Vol. 5, pp. 205-264(1982).
    9.A. H. Cottrell, “Theory of Dislocations,” Prog. in Met. Phys., Vol. 2, pp. 77-126(1982).
    10.W. A. Jesser and D. Kuhlmann-Wilsdorf, “Glide and Climb Stresses on Secondary Slip Systems in FCC Crystals Due to Isolated Primary Edge and Screw Dislocations,” Mater. Sci. Eng., Vol. 51, pp. 31-37(1981).
    11.T. Rasmussen, K. W. Jacobsen, T. Leffers, O. B. Pedersen, S. G. Srinivasan, and H. Jonsson, “Atomistic Determination of Cross-Slip Pathway and Energetics,” Phys. Rev. Lett., Vol. 79, No. 19, pp. 3676-3679(1997).
    12.G. Lu, Vasily V. Bulatov and Nicholas Kioussis, “On Stress Assisted Dislocation Constriction and Cross-Slip,” Int. J. Plast., Vol. 20, pp. 447-458(2004).
    13.D. Mordehaia, I. Kelsona and G. Makovb, “Cross-Slip and Annihilation of Screw Dislocations in Cu: A Molecular Dynamics Study,” Mater. Sci. Eng., Vol. A400-401, pp. 37-39(2005).
    14.E. Clouet, “The Vacancy-Edge Dislocation Interaction in FCC Metals: A Comparison Between Atomic Simulations and Elasticity Theory,” Acta Mater., Vol. 54, pp. 35443-3552(2006).
    15.J. Chaussidon, M. Fivel and D. Rodney, “The Glide of Screw Dislocations in BCC Fe: Atomistic Static and Dynamic Simulations,” Acta Mater., Vol. 54, pp. 3407-3416(2006).
    16.Y. Shen and P. M. Anderson, “Transmission of a Screw Dislocation Across a Coherent, Slipping Interface,” Acta Mater., Vol. 54, pp. 3941-3951(2006).
    17.R. S. Mishra, “Dislocation-Particle Interaction at Elevated Temperatures,” JOM, Vol. 61 No. 2, pp. 52-55(2009).
    18.M. A. Meyers, S. Traiviratana, V. A. Lubarda, D. J. Benson, and Eduardo M. Bringa, “The Role of Dislocations in the Growth of Nanosized Voids in Ductile Failure of Metals,” JOM, Vol. 61, No. 2, pp. 39-45(2009).
    19.Y. N. Osetsky, G. Mikhin and A. Serra, “Computer Simulation Study of Copper Precipitates in ?-iron,” J. Nucl. Mater., Vol. 212-215, pp. 236-240(1994).
    20.P. Kizler, D. Uhlmann and S. Schmauder, “Linking Nanoscale and Macroscale: Calculation of the Change in Crack Growth Resistance of Steels with Different States of Cu Precipitation Using a Modification of Stress-Strain Curves Owing to Dislocation Theory,” Nucl. Eng. Des., Vol. 196, pp. 175-183(2000).
    21.T. Harry and D. J. Bacon,” Computer Simulation of the Core Structure of the <111> Screw Dislocation in ?-Iron Containing Copper Precipitates: I. Structure in the Matrix and a Precipitate,” Acta Mater., Vol. 50, pp. 195-208(2002).
    22.S. Nedelcu, P. Kizler, S. Schmauder and N. Moldovan,” Atomic Scale Modelling of Edge Dislocation Movement in the ? -Fe–Cu System,” Mater. Sci. Eng., Vol. 8, pp. 181-191(2000).
    23.D. Rodney, “Atomic-Scale Modeling of Clear Band Formation in FCC Metals,” Nucl. Instrum. Methods Phys. Res., Sect. B, Vol. 228, pp. 100-110(2005).
    24.K. Tapasa, D. J. Bacon and Y. N. Osetsky, “Simulation of Dislocation Glide in Dilute Fe–Cu Alloys,” Mater. Sci. Eng., A, Vol. 400-401, pp. 109-113(2005).
    25.A. Takahashi and N. M. Ghoniem, “A Computational Method for Dislocation–Precipitate Interaction,” J. Mech. Phys. Solids, Vol. 56, pp. 1534-1553(2008).
    26.D. A. Terentyev, Y. N. Osetsky and D. J. Bacon, “Effects of Temperature on Structure and Mobility of the <100> Edge Dislocation in Body-Centred Cubic Iron,” Acta Mater., Vol. 58, pp. 2477-2482(2010).
    27.R. Smith, “Atomic and Ion Collisions in Solids and At Surfaces: Theory, Simulation and Applications,” Cambridge University Press, USA, (1997).
    28.M. S. Daw, S. M. Foiles and M. I. Baskes, “The Embedded-Atom Method: A Review of Theory and Applications,” Mater. Sci. Rep., Vol. 9, pp. 251-310 (1993).
    29.J. E. Lennard-Jones, “On the Determination of Molecular Fields.-I. From the Variation of the Viscosity of a Gas with Temperature,” Proc. R. Soc. London, Ser. A, Vol. 106, No. 738, pp. 441-462 (1924).
    30.L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals,” Phys. Rev., Vol. 114, No.3, pp. 687-690 (1959).
    31.M. S. Daw and M. I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals,” Phys. Rev. Lett., Vol. 50, No.17, pp. 1285-1288 (1983).
    32.M. S. Daw, and M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defectsin Metals,” Phys. Rev. B, Vol. 29, No.12, pp. 6443-6453 (1984).
    33.C. W. Gear, “Numerical Initial Value Problems in Ordinary Differential Equations,” Prentice-Hall, Englewood Cliffs, NJ,(1971).
    34.J. M. Haile, “Molecular Dynamics Simulation, John Wiley and Sons,” New York, (1992).
    35.J. D. Kim and C. H. Moon, “A Study on Microcutting for the Configuration of Tools Using Molecular Dynamics,” J. Mater. Process. Technol., Vol.59, pp. 309-314 (1996).
    36.C. L. Kelchner, S. J. Plimpton and J. C. Hamilton, “Dislocation Nucleation and Defect Structure During Surface Indentation,” Phys. Rev. B, Vol.58, No. 17, pp. 11085-11088 (1998).
    37.鄭宇哲, “分子動力學模擬單晶銅材的奈米尺寸切削行為,” 國立台灣科技大學碩士論文, 2008
    38.D. C. Giancoli, “Physics for Scientists & Engineers with Modernphysics(3rd Edn), Prentice Hall,” New Jersey, pp.466-469(2000).
    39.R. A. Johnson, “Analytic Nearest-Neighbor Model for FCC Metals,” Phy. ReV. B., Vol.37, No.8, pp.3924-3931 (1988)
    40.R. A. Johnson, “Alloy Models with the Embedded-Atom Method,” Phy. ReV. B., Vol.39, No.17, pp.12554-12559 (1989).
    41.D. Roundy, C. R. Krenn, Marvin L. Cohen, and J. W. Morris Jr., “Ideal Shear Strengths of FCC Aluminum and Copper,” Phy. ReV. Lett., Vol 82, pp.2713-2716 (1999).
    42.Y. Tomota, Y. Xia and K. Inoue, “Mechanism of Low Temperature Brittle Fracture in High Nitrogen Bearing Austentic Steels,” Acta mater. Vol. 46, No. 5, pp. 1577-1587 (1998).
    43.O. Y. Kontsevoi, Y. N. Gornostyrev and A. J. Freeman, “Modeling the Dislocation Properties and Mechanical Behavior of Ir, Rh, and Their Refractory Alloys,” JOM, pp. 43-47 (2005).
    44.L. Shiyong, L. Deyi and L. Shicheng, “Transgranular Fracture in Low Temperature Brittle Fracture of High Nitrogen Austenitic Steel,” J Mater Sci., pp. 7514-7519 (2007).
    45.H. B. Li, Z. H. Jiang, Z. M. Zhang and B. Y. Xu, “Research on Fracture Behavior of High Nitrogen Austenitic Stainless Steels at Cryogenic Temperature,” Proceedings of Sine Swedish Structural Materials Symposium, pp.325-329 (2007)
    46.Y. Y. Ye, R.Biswas, J. R.Morris, A. Bastawros and A. Chandra, “Molecular Dynamics Simulation of Nanoscale Machining of Copper,” Institute of Physics Publishing, pp.390-396(2003).

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE