簡易檢索 / 詳目顯示

研究生: 夏棋
MUHAMMAD - MUSTAFIZUR RAHMAN BHUIYAN
論文名稱: Influence of CuZnMgAl catalyst preparation on their structures and performances in methanol reactions
CuZnMgAl觸媒製備方法對觸媒結構與甲醇轉化反應的影響
指導教授: 林昇佃
Shawn D. Lin
口試委員: 劉端祺
Tuan-Chi Liu
蔡大翔
Dah-Shyang Tsai
江志強
Jyh-Chiang Jiang
李志甫
Jyh-Fu Lee
陳敬勳
Prof. Chen
王釿鋊
Prof. Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 169
中文關鍵詞: HydrotalciteXANESCu/ZnOprecipitationimpregnation
外文關鍵詞: Hydrotalcite, XANES, Cu/ZnO, precipitation, impregnation
相關次數: 點閱:399下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銅有/無鋅被裝上的γ-Al2O3 , MgO的,他們的混合物,部分/完全分解鎂鋁水滑石( HT )在這項研究中,分析銅鋅的互動模式和酸,鹼存在的影響或聯合酸底基板,以甲醇轉化器(MC)和甲醇合成(MS)的CO氫化。的結構,電子及酸鹼性能進行了X射線衍射, XANES , EXAFS , TPR , TPD等催化活性研究由微反應器氣相色譜系統進行分析。高含氧化合物( C2 + )是由從GC流出物收集的冷凝物的GC-MS分析檢測到。的結構和CuZnMgAl催化劑的甲醇反應表演他們的準備條件顯著影響。水負荷的過程中催化合成的量,底物和預處理溫度的身份和源極被確定的參數。初濕浸漬被證明不利於CuZnMgAl結合成一個功能單元,以甲醇表現出CC鍵形成活動。濕法浸漬技術,另一方面,相反影響的條件下,銅離子(至少為4%以上),並在銅鋅和介質基片從基本部位為Cu0混合物一起工作。在這些條件下,甲醇合成降低的活化能和甲醇的現場時間轉換增強。生產更高的含氧化合物具有特定的官能團,可以通過(1)變異的Cu2 + /為Cu0組合物內銅鋅協同作用以H2還原和(2)通過熱處理變異HT結構。這些程序可以催化1 - 己醇,1 - 丁醇,1,3 - 丁二醇和幾個直/支鏈醚/甲醇和在連續系統的1 - 丁醇從甲醇酯。在間歇式反應器系統中,甲醇 - 丙醇進料產生異丁醇。部分分解水滑石,焙燒在573 K獲得青睞的直鏈醇然而,在673煅燒得到的K促進支鏈醚類和酯類隨著二醇。


    Cu with/without Zn was loaded on γ-Al2O3, MgO, their mixture, and partially/completely decomposed MgAl hydrotalcite (HT) in this study to analyze the interaction mode of CuZn and the effect of presence of acid, base or combined acid-base substrates to methanol conversion (MC) and methanol synthesis (MS) by CO hydrogenation. The structural, electronic and acid-base properties were analyzed by XRD, XANES, EXAFS, TPR, TPD etc. Catalytic activity study was done by a micro-reactor GC system. Higher oxygenates (C2+) were detected by GC-MS analysis of condensates collected from GC effluents. The structures and methanol reaction performances of CuZnMgAl catalysts are significantly influenced by their preparation conditions. The amount of water loading during catalytic synthesis, the identity and source of substrate and pretreatment temperatures are determining parameters. Incipient-wetness impregnation proved unfavorable to combine CuZnMgAl into a functional unit to exhibit C-C bond formation activity from methanol. Wet-impregnation technique, on the other hand, affected oppositely on condition that Cu2+ (at least above 4%) and Cu0 mixture in CuZn and medium basic sites from substrates work together. Within these conditions, the activation energy of methanol synthesis lowers and the site time conversion of methanol enhances. Production of higher oxygenates with specific functional groups is possible by (1) variation of Cu2+/Cu0 composition within CuZn interaction by H2 reduction and (2) variation of HT structure by thermal treatment. These procedures could catalyze 1-hexanol, 1-butanol, 1,3-butanediol and several straight/branched ethers/esters from methanol and 1-butanol from ethanol in a continuous system. In a batch reactor system, methanol-propanol feed yielded iso-butanol. Partially decomposed hydrotalcite, obtained by calcination at 573 K, favored straight chain alcohols whereas that obtained by calcination at 673 K promoted branched ethers and esters along with diols.

    Title page………………………………………………………………………………i Doctoral dissertation recommendation form ...……………………………………ii Qualification form by doctoral degree examination committee ….……………...iii Abstract……………………………………………………………………………....iv Acknowledgements…………………………………………………………….……v List of figures……………………………………………………………………….xiii List of tables………………………………………………………………………....xx List of abbreviations……………………………………………………………...xxiii Chapter1 Introduction.…………………………………………………………..…..1 1.1 Importance of hydrotalcite like compounds………………………………….……1 1.2 The latest breakthroughs regarding to HTlcs………………………………..…….3 1.3 Formation of HTlcs……………………………………………………..…………4 1.4 Structure of HTlcs…………………………………………………………...…….5 1.5 Nature of basic properties of HT…………………………………………….…….7 1.6 Catalytic properties and structures of Cu based oxides……………………………8 1.7 Synergistic effect of the oxides of Cu and Zn…………………...……………….10 1.8 Catalytic potential of Cu2+, Zn2+ based HTlcs………………………….………..12 1.9 Catalytic potential of Mg2+, Cu2+, Zn2+, Al3+ based HTlcs………………………13 Chapter 2 Experimental methods………………………………………….………14 2.1 Catalyst preparation................................................................................................14 2.2 Catalyst characterization……………………………………...………………….16 2.3 Catalytic activity test……………………………………………………………..17 Chapter 3 CuZn interaction and substrate influence on methanol conversion/synthesis……………….………………………………………………..19 Abstract………………………………………………………………………………19 3.1 Introduction………………………………………………………………………20 3.2 Experimental……………………………………………………………………..22 3.3 Results……………………………………………………………………………23 3.3.1 Characterization of the calcined catalysts…………………..………….23 3.3.2 Characterization of the reduced catalysts ……………………….……..30 3.3.3 Reaction performances of reduced catalysts……………………..…….41 3.4 Discussions………………………………………………………….……………43 3.5 Summary………………………………………………………...……………….45 Chapter 4 Influence of pretreatment on the C-C bond formation from methanol feed over CuZnMgAl catalysts…………………………………………….……….46 Abstract……………………………………………………………………………....46 4.1 Introduction……………………………………………………………...……….46 4.2 Experimental………………………………………………………..……………48 4.3 Results………………………………………………………………………..…..48 4.3.1 Effect of thermal treatments on CuZnO/d-HT catalysts………………..48 4.3.2 Methanol conversion activities of differently treated CuZnO/d-HT...…58 4.4 Discussions………………………………………………………………….……63 4.5 Summary…………………………………………………………………………66 Chapter 5 Influence of mother liquor volume during CuZn/MgAl hydrotalcite preparation on alcohols based reactions…………………………………..……....67 Abstract………………………………………………………………………………67 5.1 Introduction……………………………………………………………………....67 5.2 Experimental………………………………………………….………………….68 5.3 Results…………………………………………………………………...……….68 5.3.1 Morphology of the catalysts……………………………………………68 5.3.2 Activity of the catalysts……………………………….………………..80 5.4 Discussions……………………………………………………………………….87 5.5 Summary……………………………………………………………..…………..88 Chapter 6 Effect of calcination on Cu-Zn-loaded hydrotalcite catalysts for C-C bond formation derived from methanol………………………………..………….89 Abstract………………………………………………………………………………89 6.1 Introduction…………………………………………………..…………………..90 6.2 Experimental……………………………………………………………………..91 6.3 Results……………………………………………………………………………91 6.3.1 XRD of CuZn/HT573 and CuZn/HT673……………………………...….91 6.3.2 TGA………………………………………...…………………………..94 6.3.3 TPR study…………………………………………………..…………..95 6.3.4 CO2-adsorption study…………………………………………………..97 6.3.5 XANES and EXAFS study………………………………...………..…99 6.3.6 Methanol conversion over CuZn/HT573 and CuZn/HT673…………….107 6.4 Discussion……………………………………………………………………….112 6.5 Summary………………………………………………………………….……..117 Chapter 7 Influence of preparation sequence on CuZnMgAl hydrotalcite catalysts for methanol conversion…………………………………..………….…118 Abstract………………………………………………………………………..…….118 7.1 Introduction……………………………………………………………….…….119 7.2 Experimental………………………………………………………...………….121 7.3 Results…………………………………………………………………………..122 7.3.1 XRD study……………………………………………...……………..122 7.3.2 TGA…………………………………………………………..……….126 7.3.3 TPR study……………………………………………………………..127 7.3.4 XANES and EXAFS study…………………………………………...130 7.3.5 Methanol conversion over CuZnMgAl catalysts……………..……….135 7.4 Discussions…………………………………………………………………..….139 7.5 Summary……………………………………………………………………..…140 Chapter 8 Conclusions and recommendations………………..…………………142 References…………………………………………………………….……………143 Appendices…………………………………………………………………...…….152 A.1 Possible pathways of carbon-carbon bond formation………………………….152 A.2 Ostwald ripening mechanism……………………………………………..……153 B.1 Effect of pH during co-precipitation on HT from nitrate precursor………........154 B.2 Methanol conversion activity and product distribution of the catalysts prepared by different preparative sequence……………………………………………...……….156 B.3 Effect of addition of inorganic co-feed with methanol on the activity of CuZn/HT573-C573-R573…………………………………………………………....158 B.4 Effect of variation of HT composition on the activities of CuZn/HT573-C573-R573…………………………………………………………………………..…….161 C.1 Poster presented in ABC-7………………………………………………….….164 C.2 Poster presented in APCAT-6……………………………………………….….165 D Publications…………………………………………………………………...….166 E Profile……………………………………………………………………………..167 Authorization form………………………………………………………………….169 List of Figures Fig. 1.1 Schematic representation of the applications of HTlcs………………..……..2 Fig. 1.2 Ideal brucite structure……………………………………………………..….5 Fig. 1.3 Simplified HT structure……………………………………………...……….5 Fig 1.4 Structure of as-synthesized-HT and dehydrated-HT………………………….7 Fig. 1.5 A typical trend of methanol synthesis over Cu/ZnO surface………………....8 Fig. 1.6 Possible pathways for the reduction of CuO to Cu…………………………...9 Fig. 1.7 Freshly synthesized and calcined CuZnO phases…………………………...10 Fig. 1.8 Surface orientations & gas-solid thermodynamics of CuZn catalyst………..11 Fig. 3.1 XRD profiles of CuO impregnate with variation of ZnO, MgO, γ-Al2O3, MA and d-HT substrate after calcination at 673 K and Rietveld analysis of the XRD profiles containing both Cu & Zn identities within 32-42o 2θ……………….……....24 Fig. 3.2 Models of CuO and CuZnO phases after calcination at 673 K……………..26 Fig. 3.3 Cu K-edge XANES and 1st-order derivative XANES for individually prepared CuO or impregnated in ZnO, MgO, γ-Al2O3, MA and d-HT substrate. Zn K-edge XANES and 1st-order derivative XANES represents only Zn-containing samples. These samples were calcined at 673 K for 6 h in air…………………...…………….28 Fig. 3.4 Fourier transformed EXAFS in r-space for the samples calcined at 673 K for 6 h in air………………………………………………………………………..……..29 Fig. 3.5 TPR profiles of CuO with/without ZnO, MgO, γ-Al2O3, MA and d-HT substrate……………....…………………………………………………………...….31 Fig. 3.6 XRD profiles of CuO impregnate with variation of ZnO, MgO, γ-Al2O3, MA and d-HT substrate after calcination and Rietveld analysis of the XRD profiles containing both Cu & Zn identities within 32-42o 2θ………………………..………32 Fig. 3.7 Schematic diagram of CuO and CuZnO phases after reduction at 673 K…..34 Fig. 3.8 Cu K-edge XANES and derivative XANES for individually prepared CuO or impregnated in ZnO, MgO, γ-Al2O3, MA and d-HT substrate. Zn K-edge XANES and 1st-order derivative XANES represents only Zn-containing samples……………………………………………………………………………….36 Fig. 3.9 Fourier transformed EXAFS in r-space for the samples calcined at 673 K for 6 h in air and then partially reduced for 2 h………………………………………….37 Fig. 3.10 Temperature-resolved CO2-adsorption profiles of CuO with/without ZnO, MgO, γ-Al2O3, MA and d-HT substrate…………………………………………...…39 Fig. 3.11 Arrhenius plot of MS by CO-hydrogenation and methanol site time conversion. MC and MS reactions were run at 1 atm in a fixed bed reactor……...…42 Fig. 4.1 TGA profiles of fresh HT and CuZnO/d-HT within 373-1173K……………49 Fig. 4.2 TPR profiles of 673 K-calcined d-HT, 673 K-calcined CuZnO/d-HT and 673 K-calcined-673 K-reduced-673 K-recalcined CuZnO/d-HT…………………….......50 Fig. 4.3 XRD profiles of as-received HT after calcination at different temperature, as-prepared CuZnO/d-HT during in-situ calcination and 673 K-calcined CuZnO/d-HT during in-situ reduction………………………………………………...………….…52 Fig. 4.4 In-situ XANES spectra collected during calcination of CuZnO/d-HT……………………………………………………...…………………………..…54 Fig. 4.5 In-situ XANES Spectra collected during H2 uptake of CuZnO/d-HT....……55 Fig. 4.6 CO2-adsorption profiles of differently pretreated CuZnO/d-HT………...….56 Fig. 4.7 MC and C2+ selectivity over differently pretreated CuZnO/d-HT…………..58 Fig. 4.8 Pathways towards steady-state activities of 673 K-calcined, 673 K-calcined & 473 K-reduced, 673 K-calcined & 523 K-reduced, 673 K-calcined & 573 K-reduced CuZnO/d-HT catalysts at 523 K reaction temperature…………………………….…59 Fig. 4.9 MC consistency over CuZnO/d-HT………………………………………....61 Fig. 5.1 Evolution of XRD patterns during preparation of HT-supported CuZn catalysts, with HT support pre-calcined at 573 K…………..………...…………..….69 Fig. 5.2 BET, BJH, HK models of the samples after calcination and reduction……………………………..…………………………………………….....71 Fig. 5.3 Cu K-edge XANES, derivative XANES, and EXAFS profiles of 573 K-calcined and 573 K-reduced samples………………………………………...…..…..75 Fig. 5.4 Zn K-edge XANES, derivative XANES and EXAFS profiles of 573 K-calcined and 573 K-reduced samples……………………………………………...…78 Fig. 5.5 TPR profiles of CuZn/HT samples after calcination at 573 K and after reduction at 573 K…………………..…………………………………………….….79 Fig. 5. 6 CO2-TPD profiles of CuZn/HT samples after reduction at 573 K……...….80 Fig. 5. 7 methanol conversion profiles of CuZn/HT catalysts with selectivities of CuZn/HT573-A, CuZn/HT573-B and CuZn/HT573-C………………………………….82 Fig. 5. 8 ethanol conversion profiles of CuZn/HT catalysts with selectivities of CuZn/HT573-B and CuZn/HT573-C………………………………………………...…83 Fig. 5. 9 methanol-ethanol conversion results of CuZn/HT573-B and CuZn/HT573-C with molar methanol : ethanol = 1 : 0.7 and 1 : 2.8 at combined WHSV = 0.2 h-1…..86 Fig. 6.1 Evolution of XRD patterns during preparation of HT-supported CuZn catalysts, with HT support pre-calcined at 573 and 673 K…………...…..………….93 Fig. 6.2 TGA profiles of HT support and CuZn/HT catalysts after different pretreatments……………………………………………………………………...….95 Fig. 6.3 TPR profiles of HT support and CuZn/HT catalysts after different pretreatments….…………………………………………………………………....96 Fig. 6.4 Temperature-resolved CO2-adsorption profiles of CuZn/HT catalysts….……………………………………………………………………...……98 Fig. 6.5 Cu K-edge XANES and XANES derivative of CuZn/HT catalysts after different pretreatments…………………………………………………….………101 Fig. 6.6 Fourier-transformed EXAFS in r-space of the Cu K-edge and Zn K-edge of CuZn/HT catalysts after different pretreatments………………….………………...103 Fig. 6.7 Zn K-edge XANES and XANES derivative of CuZn/HT catalysts after different pretreatments…………………………………………………….………..106 Fig. 6.8 EXAFS in k-space of the Cu K-edge and Zn K-edge of CuZn/HT catalysts after different pretreatments…………………………………...……………………107 Fig. 6.9 Results of the methanol conversion reaction over 573 K- and 673 K-calcined CuZn/HT catalysts and further pre-treatment……………...………………….……108 Fig. 6.10 Conversion-selectivity correlations with temperature over Cu-Zn/HT573-C573-R573 and Cu-Zn/HT673-C673-R573………………..……………………..….110 Fig. 6.11 Schematic illustration of Cu and Zn morphology before and after reduction at 573 K of CuZn/HT573-C573 and CuZn/HT673-C673……………………………..114 Fig. 7.1 XRD profiles of all supports and prepared samples after drying and after calcination……………….…………………………………………………….……124 Fig. 7.2 TGA profiles of all supports, (MgAl)c-supported, (MgAl)h-supported, (CuMgAl)h, (ZnMgAl)h-supported samples………………………………………...127 Fig. 7.3 TPR profiles of (MgAl)c-supported, (MgAl)h-supported, (CuZnMgAl)h, (ZnMgAl)h- and (CuMgAl)h-supported samples after in-situ calcination at 573 K in air for 6 h……………………………………………………………………...……129 Fig. 7.4 Cu k-edge profiles of XANES, derivative XANES, EXAFS r-space EXAFS k-space………………………………..……………………………………………..132 Fig. 7.5 Zn k-edge profiles of XANES, derivative XANES, EXAFS r-space EXAFS k-space………………………………………………………………………………134 Fig. 7.6 MC activity of the catalysts prepared by sequential/simultaneous deposition/impregnation over commercial/homemade supports……………...…….137 Fig A.2a Ostwald ripening phenomenon………………………………………...…153 Fig. A.2b Routes to reach supersaturation………………………………………….153 Fig. B.1a Effect of pH during co-precipitation on HT and boehmite structures…....154 Fig. B.1b Co-precipitation in open system with manual addition of neutralizing agent or the precursor or both……………………………………………………………..155 Fig. B3 MC activity of CuZn/HT573-C573-R573 in presence of co-feeds: all, O2, CO, CO2, H2, H2O, H2 with different molar ratio and H2O with different molar ratio……………………………………………………………………………….…159 Fig. B4a methanol conversion over CuZn/HT573-C573-R573 and over CuZn/HT673-C673-R57 with different HT compositions. Methanol was fed with H2 with methanol : H2 = 1 : 0.3 molar ratio…………………………………………..………………….162 Fig. B4b methanol conversion over CuZn/HT573-C573-R573 with different HT compositions. Methanol was fed with H2O with methanol : H2O = 1 : 0.3 molar ratio………………………………………………………………………………….163

    1. F. Cavani, A. Vaccari, Appl. Catal., 1991. 11(2): p. 173-301.
    2. E.D. Batyrev, G. Rothenberg, J. Phys. Chem. C, 2012. 116: p. 19335-19341.
    3. J. Perez-Ramirez, N.M. van der Pers, Chem. Eur. J., 2007. 13: p. 870-878.
    4. X. Wang, J.C.H., A.I. Frenkel, J.-Y. Kim, J.A. Rodriguez, J. Phys. Chem. B, 2004. 108: p. 13667-13673.
    5. R.G. Herman, G.W. Simons, B.P. Finn, J.B. Bulko, T.P. Kobylinski, J. Catal., 1979. 56(3): p. 407-429.
    6. M. Behrens, I. Kasatkin, S. Kuhl, M. Havecker, F.A.- Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M. Tovar, R.W. Fischer, J.K. Norskov, R. Schlogl, Science, 2012. 336: p. 893-897.
    7. S. Miyata, Clays Clay Miner., 1975. 23: p. 369-375.
    8. S. Miyata, Kagaku Gijutsushi MOL, 1977. 15: p. 32.
    9. M.N. Barroso, L.A. Arrua, M.C. Abello, Appl. Catal. A: Gen., 2006. 304: p. 116-123.
    10. M.N. Barroso, L.A. Arrua, M.C. Abello, Catal. Lett., 2006. 109(1-2): p. 13-19.
    11. M.N. Barroso, J.A. Gamboa, L.A. Arrua, M.C. Abello, J. Phys. Chem. Sol., 2006. 67: p. 1583-1589.
    12. J.I.D. Cosimo, M. Xu, E. Iglesia, C.R. Apesteguia, J. Catal., 1998. 178: p. 499-510.
    13. M.J. Climent, S. Iborra, A. Velty, Green Chem., 2002. 2002: p. 474-480.
    14. M.J. Climent, S. Iborra, A. Velty, J. Mol. Catal. A: Chem., 2002. 182-183: p. 327-342.
    15. J.S. Valente, M. Gravelle, P. Kumbhar, J. Lopez, J.-P. Besse, J. Catal., 2000. 189: p. 370-381.
    16. J. Perez-Ramirez, F. Kapteijn, J.A. Moulijn, J. Mater. Chem., 2001. 11: p. 821-830.
    17. J. Perez-Ramirez, G.M., J. A. Moulijn, Vib. Spectrosc., 2001. 27: p. 75-88.
    18. J. Perez-Ramirez, G.M., F. Kapteijn, J.A. Moulijn, Mater. Res. Bull., 2001. 36: p. 1767-1775.
    19. J. Perez-Ramirez, Thermochim. Acta, 2006. 444: p. 75-82.
    20. J. Rocha, V. Rives, M.A. Ulibarri, J. Mater. Chem., 1999. 9: p. 2499-2503.
    21. N.S. Puttaswamy, J. Mater. Chem., 1997. 7(9): p. 1941-1945.
    22. Y.-T. Tsai, A. Campos, J.G. Goodwin Jr. J.J. Spivey, Appl. Catal. A: Gen., 2011. 396: p. 91-100.
    23. M. Crivello, J. Fernandez, G. Eimer, E. Herrero, S. Casuscelli, E.R-. Castellon, Appl. Catal. A: Gen., 2007. 317: p. 11-19.
    24. C.A.S. Barbosa, A.M. da C. Ferreira, V.R.L. Constantino, Appl. Clay Sci., 2005. 28: p. 147-158.
    25. L. Obalova1, J. Balabanova, K. Jiratova, Z. Bastl, M. Valaskova, Z. Lacny, F. Kovanda, Catal. Today, 2007. 119: p. 233-238.
    26. H.A. Prescott, E. Kemnitz, A. Trunschke, J. Deutsch, H. Lieske, A. Auroux, J. Catal., 2005. 234: p. 119-130.
    27. M.B. Talawar, P.D. Sawant, T. Raja, B.S. Rao, Green Chem., 2000. 2: p. 266-268.
    28. K. Schulze, Chyzy, R. Dziembaj, G. Geismar, Appl. Clay Sci., 2001. 18: p. 59-69.
    29. M. Bolognini, D. Scagliarini, C. Flego, C. Perego, M. Saba, Catal. Today, 2002. 75: p. 103-111.
    30. S.K. Jana, T. Tatsumi, J. Catal., 2007. 2007: p. 214-222.
    31. R. Klimkiewicz, Appl. Catal. A: Gen., 2009. 360: p. 199-204.
    32. J.R. Ruiz, J.M. Hidalgo, J.M. Marinas, J. Mol. Catal. A: Chem., 2006. 246: p. 190-194.
    33. A.-M. Hilmen, M.J.L. Gines, E. Iglesia, Appl. Catal. A: Gen., 1998. 169: p. 355-372.
    34. T.C. Hsiao, S.D. Lin, Catal. Lett., 2007. 119: p. 72-78.
    35. M. Catti, S. Hull, A. Pavese, Phys. Chem. Minerals, 1995. 22: p. 200-206.
    36. J.A. van Bokhoven, K.P. de Jong, D.C. Koningsberger, Chem. Eur. J., 2001. 7(6): p. 1258-1265.
    37. M.D. Newsham, T.J. Pinnavaia, D.G. Nocera, J. Am. Chem. Soc., 1988. 110: p. 3885-3891.
    38. E. Kanezaki, Inorg. Chem., 1998. 37: p. 2588-2590.
    39. A. van der Pol, B.L. Mojet, E. de Boer, J. Phys. Chem., 1994. 98: p. 4050-4054.
    40. S. Britto, Inorg. Chem., 2009. 48: p. 11646-11654.
    41. K.A. Rodgers, R. Barton, Clays and Clay Minerals, 1991. 39(1): p. 103-107.
    42. D. Tichit, F. Figueras, J.R. Ruiz, Langmuir, 1998. 14: p. 2086-2091.
    43. V.R.L. Constantino, Inorg. Chem., 1995. 34: p. 883-892.
    44. S.H. Taylor, A.A. Mirzaei, Catal. Today, 2003. 84: p. 113-119.
    45. A. Muramatsu, T. Akiyama, J.-I. Yagi, ISIJ Int., 1993. 33(11): p. 1144-1149.
    46. S. Derrouiche, C. Louis, Chem. Mater., 2012. 24: p. 2282-2291.
    47. J.A. Rodriguez, J.C. Hanson, M. Perez, A.I. Frenkel, Catal. Lett. , 2003. 85(3-4).
    48. J.Y. Kim, J.C. Hanson, A.I. Frenkel, P.L. Lee, J. Am. Chem. Soc. , 2003. 125: p. 10684-10692.
    49. T. Fujitani, S. Ueno, T. Uchijima, J. Nakamura, Appl. Surf. Sci., 1997. 121/122: p. 583-586.
    50. J.A. Rodriguez, J. Phys. Chem., 1987. 91: p. 2161-2171.
    51. J.A. Rodriguez, Langmuir, 1988. 4: p. 1006-1020.
    52. M. Fernandez-Garcia, J.C. Hanson, J.A. Rodriguez, Chem. Rev., 2004. 104: p. 4063-4104.
    53. T. Inui, Catal. Today, 1996. 29: p. 329-337.
    54. S. Sa, L. Brandao, J.M. Sousa, A. Mendes, Appl. Catal. B: Environmental, 2010. 99: p. 43-57.
    55. A.E. Galetti, L.A. Arrua, A.J. Marchi, M.C. Abello, Catal. Commun., 2008. 9: p. 1201-1208.
    56. S. Goodarznia, J. Mol. Catal. A: Chem., 2010. 320: p. 1-13.
    57. W.J.H. Dehertog, Appl. Catal., 1991. 71: p. 153.
    58. M. Seiler, A. Buchholz, M. Hunger, Catal. Lett., 2003. 88: p. 187.
    59. D. Prizn, Appl. Catal., 1988. 37: p. 137.
    60. K. Klier, Adv. Catal. , 1982. 31: p. 243-313.
    61. M.S. Spancer, Top. Catal., 1999. 8: p. 259.
    62. M. Behrens, J. Catal., 2009. 267: p. 24.
    63. M. Schwartz, Encyclopedia of smart materials. First ed. 2002, John Wiley & Sons: New Jersey. 1176.
    64. I. Roy, M.N. Gupta, Bichem. Engg. J. , 2003. 16(3): p. 329-335.
    65. M. Sardar, M.N. Gupta, Biotechnol. Prog., 2003. 19: p. 1654-1658.
    66. S. Sharma, A. Jain, M.R. Rajeswari, M.N. Gupta, Biomacromolecules, 2003. 4: p. 330-336.
    67. N. Sui, J. Chen, P. Kuang, D. Joyce, J. Psychopharmacol., 2001. 15(4): p. 287-291.
    68. S.K. Zhang, R. Hey, A. Garcia-Cristobal, A. Cantarero, Appl. Phys. Lett., 2000. 77: p. 4380-4382.
    69. J.S. Jang, N. Shin, C. Yu, J.S. Lee, J. Solid State Chem., 2007. 180: p. 1110-1118.
    70. G. Carja, H. Niiyama, Appl. Catal. A: Gen., 2002. 236: p. 91-102.
    71. M.A.L. Vargas, U. Constantino, F. Marmottini, T. Montanari, P. Patrono, F. Pinzari, G. Ramis, J. Mol. Catal. A: Chem., 2007. 266: p. 188-197.
    72. M.H. Stacey, Langmuir, 1986. 3(5): p. 681-686.
    73. A.C. Larson, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (2004).
    74. G.C. Chinchen, D.G. Parker, G.D. Short, M.S. Spencer, K.C. Waugh, D.A. Whan Prepr. -Div. Fuel Chem., Am. Chem. Soc., 1984. 29(5): p. 178.
    75. J.W. Evans, A.J. Bridgewater, D.J. Young, Appl. Catal., 1983. 7.
    76. K. Frolich Per, D. Quiggle, Ind. Eng. chem., 1928. 20: p. 694.
    77. K. Frolich Per, P.S. Taylor, C.A. Southwich Jr.,, Ind. Eng. chem., 1928. 20: p. 1327.
    78. K. Frolich Per, M.R. Fenske, Ind. Eng. chem., 1929. 21: p. 109.
    79. O. Kostelitz, Kolloid Z, 1934. 67: p. 265.
    80. G. Natta, Catalysis, 1955. 3: p. 349.
    81. J.B. Bulko, K. Klier, G.W. Simmons, J. Phys. Chem., 1979. 83: p. 3118-3122.
    82. S. Mehta, K. Klier, R.G. Herman, J. Catal., 1979. 57: p. 339.
    83. J. Hu, X.-R. Shi, B.-R. Li, J. Wang, J. Phys. Chem. C, 2009. 113: p. 7227-7235.
    84. I. Hegemann, K. Fink, J. Comput. Chem., 2008. 29: p. 2302-2310.
    85. J. Xiao, J. Phys. Chem. Lett., 2012. 3: p. 2638-2642.
    86. M. Hellstrom, K. Hermansson, P. Broqvist, Phys. Rev. B, 2012. 86: p. 1-8.
    87. A. Zainelabdin, S. Zaman, O. Nur, J. Lu, L. Hultman, M. Willander, J. Mater. Chem., 2012. 22: p. 11583-11590.
    88. C. Woll, Prog. Surf. Sci., 2007. 82: p. 55-120.
    89. X. Liu, S. Xie, Y. Pei, M. Qiao, K. Fan, Int. J. Hydrogen Energy, 2012. 37(8): p. 6381-6388.
    90. C.-C. Chang, C.-T. Chang, B.-J. Liaw, Y.-Z. Chen Chem. Engg. J., 2012. 192: p. 350-356.
    91. A.P. Moura, J.C. Sczancoski, D.G. Stroppa, E.C. Paris, A.J. Ramirez, J.A. Varela, E. Longo, Adv. Pow. Technol., 2010. 21: p. 197-202.
    92. J.A. Rodriguez, C.T. Campbell, J. Phys. Chem., 1987. 91: p. 6648-6658.
    93. M. Ali, Chem. Mater., 2009. 22: p. 85-91.
    94. P.L. Hansen, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, H. Topsoe,, Science, 2002. 295: p. 2053.
    95. X.-M. Liu, Z.-F. Yan, J. Beltramini, Eng. Chem. Res., 2003. 42: p. 6518-6530.
    96. J. Agrell, M. Boutonnet, I.M.- Cabrera, R.M. Navarro, J.L.G. Fierro, J. Catal., 2003. 219: p. 389-403.
    97. B. Frank, H. Soerijanto, J. Krohnert, R. Schlogl, R. Schomacker, J. Catal., 2007. 246: p. 177-192.
    98. M. Saito, M. Takeuchi, T. Watanabe, Appl. Catal. A: Gen., 1996. 138: p. 311-318.
    99. W.-H. Cheng, Appl. Catal. A: Gen., 1995. 130: p. 13-30.
    100. M. Saito, I. Takahara, T. Watanabe, M. Takeuchi, Y. Kanai, K. Moriya, T. Kakumoto, Energy Convers. Mgmt, 1995. 36(6-9): p. 577-580.
    101. H.Y. Chen, J. Lin, K.L. Tan, J. Li, J. Phys. Chem. B, 1998. 102: p. 1994-2000.
    102. T.C. Hsiao, S.D. Lin, J. mol. Catal. A: Chem., 2007. 277: p. 137-144.
    103. K. Shimomura, M. Oba, Y. Kotera, J. Catal., 1978. 52: p. 191-205.
    104. F. Cavani A. Vaccari, Catal. Today, 1991. 11: p. 173-301.
    105. D.G. Evans, Struct Bond, 2006. 119: p. 1-87.
    106. V.R.L. Constantino, Inorg. Chem., 1995. 34: p. 883-892.
    107. J.I.D. Cosimo, M. Xu, E. Iglesia, C.R. Apesteguia, J. Catal., 1998. 178: p. 499-510.
    108. D.P. Debecker, G. Busca, Chem. Eur. J., 2009. 15: p. 3920-3935.
    109. L.-S. Kau, J.E. Penner-Hahn, K.O. Hodgson, E.I. Solomon, J. Am. Chem. Soc., 1987. 109: p. 6433-6442.
    110. J.L. DuBois, T.D.P. Stack, B. Hedman, E.I. Solomon, K.O. Hodgson, J. Am. Chem. Soc., 2000. 122: p. 5775-5787.
    111. R.A. Bair, Physical review, 1980. 22(6): p. 2767-2776.
    112. L. Galoisy, G. Calas, V. Brois, J. Non-Cryst. Solids, 2001. 293-295(1).
    113. G.A. Waychunas, J.A. Davis, Geochim. Cosmochim. Acta, 2002. 66: p. 1119-1137.
    114. V.K. Diez, J.I. Di Cosimo, Catal. Today, 2000. 63: p. 53-62.
    115. G.V. Sagar, C.S. Srikanth, K.V.R. Chary, J. Phys. Chem., 2006. 110: p. 13881-13888.
    116. M. Dixit, P.A. Joshi, D.O. Shah, J. Ind. Engg. Chem., 2013. 19: p. 458-468.
    117. G.E. Parris, K. Klier, J. Catal., 1986. 97: p. 374-384.
    118. Y. Okamoto, T. Imanaka, S. Teranishi, J. Phys. Chem., 1983. 87: p. 3747-3754.
    119. W.P.A. Jansen, J.C.v.d. Heuvel, A.W. Denier, v.d. Gon, A. Bliek, H.H. Brongersma, J. Catal., 2002. 210: p. 229-236.
    120. J. Sloczynski, P. Olszewski, A. Koziowska, J. Stoch, M. Lachowska, J. Skrzypek, Appl. Catal. A: Gen., 2006. 310: p. 127-137.
    121. P.B. Rasmussen, I. Chorkendorff, Surf. Sci., 1994. 318: p. 267-280.
    122. J. Yoshihara, C.T. Campbell, J. Catal., 1996. 161: p. 776.
    123. J. Szanyi, Catal. Lett., 1991. 10: p. 383.
    124. J. Nakamura, T. Fujitani, Top. Catal., 2003. 22: p. 277-285.
    125. J.G. Nunan, K. Klier, K.J. Smith, C.W. Young, R.G. Herman, J. Catal., 1988. 113: p. 410.
    126. J.G. Nunan, K. Klier, K.J. Smith, C.W. Young, R.G. Herman, J. Catal., 1989. 116: p. 195.
    127. S.D. Lin, T.C. Hsiao, L-C. Chen, Appl. Catal. A: Gen., 2009. 360: p. 226-231.
    128. M. Kurtz, T. Genger, O. Hinrichsen, M. Muhler, Catal. Lett., 2003. 86: p. 77-80.
    129. W. Cao, S. Li, Q. Yuan, Chem. Eng. J., 2006. 119(2-3): p. 93-98.
    130. T. Valdes-Solis, A.B. Fuertes, Catal. Today, 2006. 116(3): p. 354-360.
    131. W.-H. Cheng, Appl. Catal. B: Env., 1995. 7: p. 127-136.
    132. M. Bellotto, O. Clause, J. Lynch, D. Bazin, E. Elkaim, J. Phys. Chem., 1996. 100: p. 8535-8542.
    133. H. Hattori, Chem. Rev., 1995. 95: p. 537-558.
    134. T. Jiang, B. Zhong, Fuel Process. Technol., 2001. 73: p. 175-183.
    135. W.T. Reichle, J. Catal., 1985. 94: p. 547-557.
    136. D. Tichit, F. Figueras, R. Tessier, J. Kervennal, Appl. Clay Sc., 1998. 13: p. 401-415.
    137. J.C.A.A. Roelofs, J.V. Dillen, K.P.D. Jong, J. Catal., 2001. 203: p. 184-191.
    138. S. Abello, D. Tichit, J. Perez-Ramirez, J.C. Groen, J.E. Sueiras, P. Salagre, Y. Cesteros, Chem. Eur. J., 2005. 11: p. 728-739.
    139. D. Tichit, B. Coq, R. Durand, R. Teissier, J. Catal., 2003. 219: p. 167-175.
    140. J.I.D. Cosimo, M.J.L. Gines, E. Iglesia, J. Catal., 2000. 190: p. 261-275.
    141. Reichle, W.T., U. S. 4,458,026 (To Union Carbide Corp., July 3, 1984).
    142. T. Nakatsuka, S. Yamashita, S. Kohjiya, Bull. Chem. Soc. Jap., 1979. 52: p. 2449.
    143. J.Y. Zhang, C. Liu, Appl. Catal. A, 1995. 126: p. 205.
    144. B. Bill, B. Eliasson, E. Killier, U. Kogelschatz, Energy Convers. Manage, 1997. 38: p. 415.
    145. Q. Sun, H.Y. Chen, J.F. Deng, S.Y. Chen, Catal., 1997. 167: p. 92.
    146. N. Tsubaki, K. Fujimoto, J. Catal., 2001. 197: p. 224.
    147. J.W. Evans, A.J. Bridgewater, D.J. Young, Appl. Catal., 1983. 7: p. 75-83.
    148. F. Rouquerol, K.S.W. Sing, Adsorption by Powders and Porous Solids. Principles, Mothodology and Applications, seventh ed., Academic Press, London, 1999 (p. 467).
    149. F. Millange, D. O'Hare, J. Mater. Chem., 2000. 10: p. 1713-1720.
    150. D.G. Evans, Struct Bond, 2006. 119: p. 1-87.
    151. L. Hickey, R.L. Frost, J. Mater. Sci., 2000. 35: p. 4347-4355.
    152. J.A. Wang, A. Morales, O. Novaro, T. Lopez, R. Gomez, J. Phys. Chem., 1999. 103: p. 299-303.
    153. G. Paglia, A. . Rohl, R.D. Hart, K. Winter, A.J. Studer, B.A. Hunter, J.V. Hanna, Chem. Mater., 2004. 16: p. 220-236.
    154. A. Ohta, H. Kagi, Y, Kanai, M. Nomura, R. Zhang, S. Terashima, N. Imai, Geochem. J. , 2006. 40: p. 363-376.
    155. D. Grandjean, E.D. Batyrev, J.C. van den Heuvel, A.A. Khassin, T.M. Yurieva, V.M. Weckhuysen, J. Phys. Chem. C, 2011. 115: p. 20175-20191.
    156. C. Perego, P. Villa, Catal. Today, 1997. 34: p. 281-305.
    157. M. Campanati, A. Vaccari, Catal. Today, 2003. 77: p. 299-314.
    158. E.C. Kruissink, J.R.H. Ross, J. Chem. Soc., Faraday Trans. 1, 1981. 77: p. 649-663.
    159. E.C. Kruissink, J.R.H. Ross, J. Chem. Soc., Faraday Trans. 1, 1981. 77: p. 665-681.
    160. J. He, B. Li, Y. Kang, D. G. Evans, X. Duan, Struct. Bond, 2006. 119: p. 89-119.
    161. L.-S. Kau, J.E. Penner-Hahn, K.O. Hodgson, E.I. Solomon, J. Am. Chem. Soc., 1987. 109: p. 6433-6442.
    162. J.L. DuBois, T.D.P. Stack, B. Hedman, E.I. Solomon, K.O. Hodgson, J. Am. Chem. Soc., 2000. 122: p. 5775-5787.
    163. R.A. Bair, Phys. Rev. B, 1980. 22(6): p. 2267-2276.
    164. S. Abis, R. Caciuffo, P. Fiorini, M. Magnani, S. Melone, F. Rustichelli, M. Stefanon, J. Nucl. Mater., 1985. 135: p. 181-189.
    165. L. Lietti, P. Forzatti, Appl. Catal., 1991. 70: p. 73-86.
    166. M. Bellotto, O. Clause, J. Lynch, D. Bazin, E. Elkaim, J. Phys. Chem., 1996. 100: p. 8527-8534.
    167. S. Miyata, Clays Clay Miner., 1980. 28: p. 50-56.
    168. D.P. Debecker, G. Busca, Chem. Eur. J., 2009. 15(3920-3935).
    169. H.A. Prescott, E. Kemnitz, A. Trunschke, J. Deutsch, H. Lieske, A. Auroux, J. Catal., 2005. 234: p. 119-130.
    170. M.J.L. Gines, M. Laborde, C.R. Apesteguia, Appl. Catal. A: Gen., 1995. 131: p. 283-296.
    171. M. Xu, A-.M. Hilmen, B.L. Stephens, E. Ignesia, J. Catal., 1997. 171(1): p. 130-147.
    172. S. Velu, Appl. Catal. A: Gen., 1994. 119: p. 241-252.
    173. A. Corma, J. Primo, F. Rey, Appl. Catal. A: Gen., 1994. 114(2): p. 215-225.
    174. R.L. Frost, J. colloid Interface Sci., 2006. 302: p. 203-206.
    175. G. Fierro, M. Inversi, P. Porta, F. Cioci, R. Lavecchia, Appl. Catal. A: Gen., 1996. 137: p. 327-348.
    176. X. Bokhimi, M.L. Guzman-Castillo, F. Hernandez-Beltran, J. Solid State Chem., 2001. 159: p. 32-40.
    177. X. Bokhimi, M.L. Guzman-Castillo, B. Mar-Mar, F. Hernandez-Beltran, J. Navarrete, J. Solid State Chem., 2001. 161: p. 319-326.
    178. S. Bruhne, W. Assmus, E. Alig, M. U. Schmidt, Growth Design, 2008. 8(2): p. 489-493.
    179. H. Ohtaki, Chem. Rev., 1993. 93(3): p. 1157-1204.
    180. I. Persson, Pure Appl. Chem., 2010. 82(10): p. 1901-1917.
    181. W.T. Reichle, Solid States Ionics, 1986. 22: p. 135-141.
    182. L. Bigey, A. de Roy, J.P. Besse, J. Phys. IV France, 1997. 7: p. C2-949-950.
    183. M. Kockerling, G. Henkel, H.-F. Nolting, J. Chem. Soc., Faraday Trans., 1997. 93(3): p. 481-484.
    184. Y.Q. Chun, Y. Bin, Trans. Nonferrous Met. Soc. China, 2011. 21: p. 2644-2648.
    185. Z. Wang, B. Liu, X. Zhao, X. Li, H. Zhu, Xuan Xu, F. Ji. K. Sun, L. Dong, Y. Chen, J. colloid Interface Sci., 2008. 320: p. 520-526.
    186. G. Selda, Ind. J. Chem. Technol., 2006. 13: p. 488-492.
    187. S.D. Lin, T.C. Hsiao, L.-C. Chen, Appl. Catal. A: Gen., 2009. 360: p. 226-231.
    188. D. Tichit, F. Figueras, R. Tessier, J. Kervennal, Appl. Clay Sci., 1998. 13: p. 401-415.
    189. F. Prinetto, R. Teissier, B. Coq, Catal. Today, 2000. 55: p. 103-116.
    190. S. Abello, D. Tichit, J. Perez-Ramirez, Y. Cesteros, P. Salagre, J.E. Sueiras, Commun., 2005: p. 1453-1455.
    191. S. Abello, X. Rodriguez, Y. Cesteros, P. Salagre, J.E. Sueiras, D. Tichit, B. Coq, Chem. Commun., 2004: p. 1096-1097.
    192. S. Abello1, D. Tichit, J. Perez-Ramirez, J.C. Groen, J.E. Sueiras, P. Salagre, Y. Cesteros, Chem. Eur. J., 2004. 11(2): p. 728-739.
    193. J.C.A.A. Roelofs, K.P. de Jong, J. Catal., 2001. 203: p. 184-191.
    194. M.E. Sad, E. Iglesia, J. Am. Chem. Soc., 2011. 133: p. 20384-20398.
    195. T.C. Hsiao, S.D. Lin, J. Mol. Catal. A: Chem., 2007. 277: p. 137-144.
    196. L.A. Espinosa, M.A. Pena, J.L.G. Fierro, Top. Catal., 2003. 22: p. 245-251.
    197. E. Audibert, Ind. Eng. Chem., 1928. 20: p. 1105.
    198. I.M. Kolthoff, E.J. Meehan, S. Bruckenste, Edizione Italiana, Piccin, Padova, 1973.
    199. J.T. Richardson, Plenum Press, New York, 1989, Chap.6.
    200. R.W. Wegman, U. S. 5,008,235 (To Union Carbide Corp., Apr. 16, 1991).
    201. W. Feitknecht, Helv. Chim. Acta, 1942. 25: p. 131.
    202. G.J. Ross, Amer. Min., 1967. 52: p. 1037.
    203. Ph. Courty in: G. Poncelet, P. Grange, P.A. Jacobs (Eds.), Preparation of catalysts III, studies in surface science and catalysis, vol. 16, Elsevier, Amstardam, 1983, p.485.
    204. J.R.H. Ross, G. Webb (Eds.), Catalysis, specialist periodical reports, Royal Society of Chemistry, London, 1985, vol. 7, p.1.
    205. A.J. Marchi, C.R. Apesteguia, Prer. IVth Int. Symp. on scientific bases for the preparation of heterogeneous catalysts, Louvain-la-Neuve (B), 1986, H-7.
    206. A.J. Marchi, C.R. Apesteguia in: F. Cossio, O. Bermudez, G. del Angel, R. Gomez (Eds.), Proc. XI IberoAmer. Symp. on Catalysis, IMP, Mexico D.F., 1988, vol. 1, p.25.
    207. Ph. Courty, E. Freund, AS. Sugier, J. Mol. Catal. , 1982. 17: p. 241.
    208. M. Yildiz, Int. J. Eng. Sci., 2005. 43: p. 1059-1080.
    209. M. Yildiz, B. Lent, Cryst. Res. Technol., 2006. 41(3): p. 211-216.
    210. L. Du, Polym. Compos., 2007. DOI 10.1002/pc.20279: p. 131-138.
    211. F.M. Labajos, P. Malet, M.A. Centeno, M.A. Ulibarri, Inorg. Chem., 1996. 35: p. 1154-1160.
    212. H.P. Boehm, C. Vieweger, Angew. Chem., 1977. 16: p. 265.
    213. T. Stanimirova, V. Balek, J. Therm. Anal. Cal., 2006. 84: p. 473-478.
    214. T.S. Stanimirova, E. Dinolova, J. Mater. Sci. Lett., 2001. 20: p. 453-455.
    215. J. Wang, R.J. Kirkpatrick, X. Hou, Chem. Mater., 2001. 13(145-150).
    216. T. Yoshioka, M. Miyahara, M. Uchida, T. Mizoguchi, A. Okuwaki, Chemosphere, 2007. 69: p. 832-835.
    217. V.R.L. Constantino, M.A. Bizeto, P.M. Dias, An. Acad. Bras. Ci., 2000. 71(1): p. 45-49.
    218. T. Hibino, Chem. Mater., 1998. 10: p. 4055-4061.
    219. S. Abello, Micropor. Mesopor. Mater., 2006. 96: p. 102-108.
    220. F. Prinetto, P. Graffin, D. Tichit, Micropor. Mesopor. Mater., 2000. 39: p. 229-247.
    221. S.P. Newman, New J. Chem., 1998: p. 105-115.
    222. T. Hibino, J. Mater. Chem., 2005. 15: p. 653-656.

    QR CODE