簡易檢索 / 詳目顯示

研究生: 廖梅君
Mei-Jun Liao
論文名稱: 具有再生能源、無耐性與異質能源需求之無線感測器效能分析
Performance Evaluation of the Wireless Sensor with Renewable Energy, Impatience, and Heterogeneous Energy Requirements
指導教授: 鍾順平
Shun-Ping Chung
口試委員: 王乃堅
林永松
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 258
中文關鍵詞: 無線感測器網路能量收集可再生能源能量需求不耐煩
外文關鍵詞: wireless sensor network, energy harvesting, renewable energy, energy requirement, impatience
相關次數: 點閱:283下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線感測器在當今大數據時代非常重要。在環境中收集的數據需要通過無線感測網路來傳輸。一方面,無線感測器需要能量來完成傳輸服務。另一方面,無線感測器的能量容量受限於小尺寸。為了延長每個無線感測器的壽命,能量收集方法可用於收集可再生能源。我們的研究假設透過能量收集方法來收集太陽能,用於支援無線感測器的傳輸需求。為了提供更好的誤碼率或數據速率,一個封包的能量需求可以是多於一個能量單位。此外,如果超過耐性區間,則封包會由於不耐煩而可能在沒完成服務的情況下離開。在這研究中,我們研究了無線感測器網路的三種情境:一種不耐煩的客戶,兩種不耐煩的客戶,以及多種不耐煩的客戶。在具有一種不耐煩客戶的第一種情境中,每個在佇列中等待的客戶可能變得不耐煩並且只需要一個能量單位來啟動服務。我們使用二維馬可夫鏈來描述第一個系統。在具有兩種不耐煩客戶的第二種情境中,每個客戶必須消耗一個或兩個能量單位來啟動服務。我們使用三維馬可夫鏈來描述第二個系統,因為我們必須確定是否是在佇列中排頭的客戶變得不耐煩。在具有多類不耐煩客戶的第三種情境中,每位不同種類的客戶必須消耗不同的能量單位來啟動服務。我們使用三維馬可夫鏈來描述第三個系統。首先,我們推導出所考慮系統的解析模型。我們利用疊代算法找到穩態機率分佈和感興趣的效能指標。其次,我們提出了一種近似方法來計算完成服務的客戶在佇列中的等待時間。第三,我們研究了不同的系統參數對於感興趣的效能指標的影響。最後但並非最不重要的是,我們利用C語言撰寫相關模型的電腦模擬程式。在研究的大多數情況下,解析結果顯示與模擬結果非常一致。


    Wireless sensors are extremely important in today's era of big data. Data collected in the environment needs to be transmitted through the wireless sensor network. On one hand, wireless sensors need energy to complete the transmission service. On the other hand, the energy capacity of a wireless sensor is limited by its small size. To extend the lifetime of each wireless sensor, the energy harvesting method can be utilized to collect renewable energy. Our research assumes that the solar energy is collected via the energy harvesting method to support the transmission needs of wireless sensors. In order to provide better bit error rate or data rate, the energy requirement of a packet may be more than one unit of energy. Furthermore, a packet may leave without finishing the service due to impatience if the patient interval is exceeded. In this work, we study three scenarios for wireless sensor networks: one class of impatient customers, two classes of impatient customers, and multiple classes of impatient customers. In the first scenario with one class of impatient customers, we focus on the cases where each customer waiting in the queue becomes impatient and requires only one energy unit to start the service. We use a two-dimensional Markov chain to describe the first system. In the second scenario with two classes of impatient customers, each customer has to consume one or two energy units to start the service. We use a three-dimensional Markov chain to describe the second system since we have to determine whether the customer becoming impatient is at the head of line in the queue or not. In the third scenario with multiple classes of impatient customers, each customer of different classes has to consume different energy units to start the service. We use a three-dimensional Markov chain to describe the third system. First, we derive the analytical models for the systems considered. An iterative algorithm is utilized to find the steady state probability distribution and performance measures of interest. Second, an approximation method is proposed to calculate the waiting time in the queue for the customers completing the service. Third, the impacts of different system parameters on the performance measures of interest are studied. Last but not least, the computer simulation program is written in C language. In most cases studied, the analytical results are shown to be in good agreement with the simulation results.

    摘要 I Abstract II 誌謝 III Contents IV List of Figures VI 1. Introduction 1 2. System model 3 2.1 One class of impatient customers 4 2.2 Two classes of impatient customers 4 2.3 Multiple classes of impatient customers 5 3. Analytical model 7 3.1 One class of impatient customers 7 3.1.1 Model diagram 7 3.1.2 State balance equations 8 3.1.3 Iterative algorithm 10 3.1.4 Performance measures 11 3.2 Two classes of impatient customers 22 3.2.1 Model diagram 22 3.2.2 State balance equations 23 3.2.3 Iterative algorithm 33 3.2.4 Performance measures 34 3.3 Multiple classes of impatient customers 55 3.3.1 Model diagram 55 3.3.2 State balance equations 56 3.3.3 Iterative algorithm 63 3.3.4 Performance measures 64 4. Simulation model 83 4.1 One class of impatient customers 83 4.1.1 Main program 83 4.1.2 Customer Arrival subprogram 83 4.1.3 Energy Arrival subprogram 85 4.1.4 Impatient subprogram 86 4.1.5 Departure subprogram 87 4.1.6 Performance measures 88 4.2 Two classes of impatient customers 95 4.2.1 Main program 95 4.2.2 Customer Arrival subprogram 95 4.2.3 Energy Arrival subprogram 97 4.2.4 Impatient subprogram 98 4.2.5 Departure subprogram 99 4.2.6 Performance measures 100 4.3 Multiple classes of impatient customers 108 4.3.1 Main program 108 4.3.2 Customer Arrival subprogram 108 4.3.3 Energy Arrival subprogram 110 4.3.4 Impatient subprogram 111 4.3.5 Departure subprogram 112 4.3.6 Performance measures 113 5. Numerical results 121 5.1 One class of impatient customers 121 5.1.1 Customer arrival rate 121 5.1.2 Impatient rate 131 5.2 Two classes of impatient customers 149 5.2.1 Customer arrival rate 149 5.2.2 Impatient rate 160 5.2.3 Different service rates 166 5.3 Multiple classes of impatient customers 200 5.3.1 Customer arrival rate 200 5.3.2 Impatient rate 213 6. Conclusions 233 7. References 235

    [1] A. R. Bhangwar, A. Ahmed, U. A. Khan, T. Saba, K. Almustafa, K. Haseeb, and N. Islam, “WETRP: Weight Based Energy & Temperature Aware Routing Protocol for Wireless Body Sensor Networks,” IEEE Access, pp. 1-10, 2019.
    [2] Y. Su, X. Lu, Y. Zhao, L. Huang, and X. Du, “Cooperative Communications with Relay Selection based on Deep Reinforcement Learning in Wireless Sensor Networks,” IEEE Sensors Journal, pp. 1-9, 2019.
    [3] A. Boubrima, W. Bechkit, and H. Rivano, “On the Deployment of Wireless Sensor Networks for Air Quality Mapping: Optimization Models and Algorithms,” IEEE/ACM Transactions on Networking, pp. 1-14, 2019.
    [4] C. Wang, J. Li, Y. Yang, and F. Ye, “Combining Solar Energy Harvesting with Wireless Charging for Hybrid Wireless Sensor Networks,” IEEE Transactions On Mobile Computing, Vol. 17, No. 3, pp. 560-576, March 2018.
    [5] X. Yue, M. Kauer, M. Bellanger, O. Beard, M. Brownlow, D. Gibson, C. Clark, C. MacGregor, and S. Song, “Development of an Indoor Photovoltaic Energy Harvesting Module for Autonomous Sensors in Building Air Quality Applications,” IEEE Internet of Things Journal, Vol. 4, No. 6, pp. 2092-2103, 2017.
    [6] A. F. Khalifeh, M. AlQudah, R. Tanash, and K. A. Darabkh, “A Simulation Study for UAV- Aided Wireless Sensor Network Utilizing ZigBee Protocol,” 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 181-184, 2018.
    [7] T. Hoßfeld, L. Atzori, P. E. Heegaard, L. Skorin-Kapov, and M. Varela, “The Interplay between QoE, User Behavior and System Blocking in QoE Management,” 2019 22nd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), pp. 112-117, 2019.
    [8] K. Dutta, R. Mukherjee, A. Kundu, and S. Kundu, “Dynamic Queuing Model for the Secondary Users in a Cognitive Radio Network for Improvement of QoS,” 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), pp. 1-6, 2018.
    [9] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell System Technical Journal, Vol. 27, pp. 379-423, 623-656, July, October 1948.
    [10] C. Kim, A. Dudin, S. Dudin, and O. Dudina, “Performance Evaluation of a Wireless Sensor Node with Energy Harvesting and Varying Conditions of Operation,” 2017 IEEE International Conference on Communications (ICC), DOI: 10.1109/ICC.2017. 7996994, 2017.
    [11] G. Xu, B. Zhang, and S. Zhang, “Multi-energy Coordination and Schedule Considering large-scale electric vehicles penetration,” 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), DOI:10.1109/ EI2.2018.8582136, 2018.
    [12] Z. Sheng, D. Tian, and V. C. M. Leung, “Toward an Energy and Resource Efficient Internet of Things: A Design Principle Combining Computation, Communications, and Protocols,” IEEE Communications Magazine, Vol. 56, No. 7, pp. 89-95, July 2018.
    [13] H. Takagi, “Waiting Time in the M/M/m/(m + c) Queue with Impatient Customers,” International Journal of Pure and Applied Mathematics, Vol. 90, No. 4, pp. 519-559, 2014.

    無法下載圖示 全文公開日期 2024/08/05 (校內網路)
    全文公開日期 2024/08/05 (校外網路)
    全文公開日期 2024/08/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE