簡易檢索 / 詳目顯示

研究生: 鍾國聖
Kuo-Sheng Chung
論文名稱: 電動輪椅同步定位與地圖構建於室內自主導航應用
Powered Wheelchair Simultaneous Localization and Mapping for Indoor Autonomous Navigation Applications
指導教授: 郭重顯
Chung-Hsien Kuo
口試委員: 周瑞仁
Jui-Jen Chou
陽毅平
Yee-Pien Yang
鍾聖倫
Sheng-Luen Chung
郭重顯
Chung-Hsien Kuo
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 52
中文關鍵詞: 移動輔具自主導航區域最佳快速拓展隨機樹人工位能場
外文關鍵詞: mobile assistive equipment, autonomous navigation, local-optimized rapidly-exploring random tree, artificial potential field
相關次數: 點閱:336下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對下肢癱瘓患者提出一應用於室內場所之自主電動輪椅控制系統,此一系統包括:地圖建置、輪椅定位、路徑規劃與避障功能。首先,地圖建構和自我定位和方面,本論文採用2D雷射測距儀即時取得掃描距離資訊,並使用機器人作業系統(Robot Operating System;ROS)之Hector SLAM(Simultaneous Localization and Mapping)開放式程式碼完成上述功能。路徑規劃導入區域最佳快速拓展隨機樹(Local-optimized Rapidly-exploring Random Tree;LoRRT)針對室內已地圖環境規劃出導航路徑,並結合人工位能場(Artificial Potential Field;APF)於導航路徑上所面臨的牆面及動靜態障礙物,做出適時的避障反應。此外,本論文也開發一人機介面(Human Machine Interface;HMI)提供使用者顯示與操作之介面,其除了提供地圖、輪椅位置及方向、導航路徑、雷射掃描外,也可以輸入導航目的資訊。最後,本研究以本實驗室所自行組裝架設之電動輪椅為測試平台,並經由不同之測試條件來驗證此一系統在實際環境運作下之效能表現。


    This thesis presents an autonomous indoor electric wheelchair control system for the patients with lower-extremity disability. The proposed control system is composed of map creation, wheelchair localization, path planning and obstacle avoidance. The map creation and wheelchair localization were achieved in terms of a 2D LiDar scanning information, and the 2D scanning information was further processed with the Hector simultaneous localization and mapping (SLAM) open source code of the robot operating system (ROS). Moreover, the path planning was realized with a local-optimized rapidly-exploring random tree (LoRRT) in terms of a pre-known map information. During the path following stage, the scanned static and dynamic obstacle information was inferred with the artificial potential field to dynamically produce a collision-free trajectory as well as to return to the desired path. Finally, this work also implemented a human machine interface (HMI) for the users to investigate the information, including map, wheelchair position and heading, navigation path, LiDar scanning information as well as to set the navigation goal position. As a consequence, a hand-made electrical wheelchair in our laboratory was used for the validation platform. The experiments were done to validate the feasibility of the proposed autonomous wheelchair control system.

    指導教授推薦書 ii 口試委員會審定書 iii 誌謝 iv 摘要 v Abstract vi 目錄 vii 表目錄 ix 圖目錄 x 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 文獻回顧 4 1.3.1 路徑規劃相關研究 4 1.3.2 反應導航相關研究 6 1.3.3 自主輪椅相關研究 8 1.4 論文架構 10 第二章 系統架構與開發設計 11 2.1 系統架構 11 2.2 硬體平台架構 12 2.2.1 電動輪椅平台 13 2.3 2D雷射測距儀 16 2.4 ROS(Robot Operating System)機器人作業系統 17 2.5 人機介面 18 2.6 使用情境 19 第三章 研究方法 21 3.1 電動輪椅之雙輪運動學控制 21 3.2 區域最佳快速拓展隨機樹路徑規劃 24 3.3 人工位能場 29 3.4 地圖建構後處理 33 第四章 研究結果與實現 34 4.1 電動輪椅定位誤差驗證 34 4.2 閃避障礙物驗證 43 第五章 結論與未來研究方向 48 參考文獻 49

    [1] J.H. Zhou and H.Y. Lin, “A self-localization and path planning technique for mobile robot navigation,” 2011 9th World Congress on Intelligent Control and Automation, pp. 694-699, 2011.
    [2] Y. Zhang, C.W. de Silva, D. Su, and Y. Xue, “Autonomous robot navigation with self-learning for collision avoidance with randomly moving obstacles,” 2014 9th International Conference on Computer Science & Education, pp. 117-122, 2014.
    [3] A. Cherubini, F. Spindler, and F. Chaumette, “Autonomous visual navigation and laser-based moving obstacle avoidance,” IEEE Transactions on Intelligent Transportation Systems, vol. 15, issue. 5, pp. 2101–2110, 2014.
    [4] R. Zhang, Y. Li, Y. Yan, H. Zhang, S. Wu, T. Yu and Z. Gu, “Control of a wheelchair in an indoor environment based on a brain–computer interface and automated navigation”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 24, pp. 128-139, 2016.
    [5] J. Lee, B.Y. Kang, and D.W. Kim, “Fast genetic algorithm for robot path planning,” Electronics Letters, vol. 49, pp. 1449–1451, 2013.
    [6] H. Grewal, A. Matthews, R. Tea, and K. George, “Lidar-based autonomous wheelchair,” 2017 IEEE Sensors Applications Symposium (SAS), pp. 1-6, 2017.
    [7] J.A. Oroko and G.N. Nyakoe, “Obstacle avoidance and path planning schemes for autonomous navigation of a mobile robot: A Review”, Proceedings of the 2012 Mechanical Engineering Conference on Sustainable Research and Innovation, vol. 4, pp. 314-318, 2012.
    [8] Y.K. Lee, J.M. Lim, K.S. Eu, Y.H. Goh, and Y. Tew, “Real time image processing based obstacle avoidance and navigation system for autonomous wheelchair application,” 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 380-385, 2017.
    [9] Z. Li, Y. Xiong, and L. Zhou, “ROS-based indoor autonomous exploration and navigation wheelchair,” 2017 10th International Symposium on Computational Intelligence and Design (ISCID), pp. 132-135, 2017.
    [10] Y. Zhu, T. Zhang and J. Song, “An improved wall following method for escaping from local minimum in artificial potential field based path planning,” IEEE Conference on Decision and Control, pp. 6017-6022, 2009.
    [11] Y. Wang, J. Wang and S. Yin, “An object-based path planning using grids-potential fields for intelligent robot,” International Conference on Genetic and Evolutionary Computing, pp. 150-153, 2009.
    [12] A. Mihailidis, P. Elinas, J. Boger, and J. Hoey, “An intelligent powered wheelchair to enable mobility of cognitively impaired older adults: an anticollision system,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, no. 1, pp. 136 – 143, 2007.
    [13] Z. Su, B. Zeng, G. Liu, F. Ye and M. Xu, “Application of fuzzy neural network in parameter optimization of mobile robot path planning using potential field,” IEEE International Symposium on Industrial Electronics, pp. 2125-2128, 2007.
    [14] Q. Zhu, Y. Yan and Z. Xing, “Robot path planning based on artificial potential field approach with simulated annealing,” International Conference on Intelligent Systems Design and Applications, Vol. 2, pp. 622-627, 2006.
    [15] S. Katsura and K. Ohnishi, “Semiautonomous wheelchair based on quarry of environmental information,” IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1373 – 1382, 2006.
    [16] B. Zhang, W. Chen and M. Fei, “An optimized method for path planning based on artificial potential field,” International Conference on Intelligent Systems Design and Applications, pp. 35-39, 2006.
    [17] H. Shi, C. Sun, X. Sun and T. Feng, “Chaotic potential field method and application in robot soccer game,” World Congress on Intelligent Control and Automation, Vol. 2, pp. 9297-9301, 2006.
    [18] S.S. Ge and Y.J. Cui, “New potential functions for mobile robot path planning,” IEEE Trans. Robotics and Automation, vol.16, no.5, pp. 615-620, 2000.
    [19] P. Veelaert, and W. Bogaerts, “Ultrasonic potential field sensor for obstacle avoidance”, IEEE Trans. Robotics and Automation, vol. 15, no. 4, pp. 774–779, 1999.
    [20] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” International Journal on Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.
    [21] L. Montesano, M. Diaz, S Bhaskar and J Minguez, “Towards an intelligent wheelchair system for users with cerebral palsy,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, no. 2, pp.193-202, 2010.
    [22] I. Iturrate, J.M. Antelis, A. Kubler and J.A. Minguez, “Noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation”, IEEE Transactions on Robotics, vol. 25, no. 3, pp. 614–627, 2009.
    [23] H. Kitagawa, T. Miyoshi, and K. Terashima, “Skill-assist control of omnidirectional wheelchair using human-friendly interface,” IEEE International Conference on Robotics and Biomimetics, pp. 1002–1007, 2008.
    [24] Y. Kuno, N. Shimada, and Y. Shirai, “Look where you are going,” IEEE Robot. Autom. Mag., vol. 10, no. 1, pp. 21–34, 2003.
    [25] 許耀升,「具反應導航之嵌入式電動輪椅控制系統」,碩士論文,國立台灣科技大學,民國100年
    [26] 張書豪,「具自主導航與避障之嵌入式移動機器人控制系統開發」,碩士論
    文,國立台灣科技大學,民國99年
    [27] ROS系統 SLAM介紹與比較,https://www.ncnynl.com/category/ros-slam/
    [28] ROS系統 SLAM介紹與比較,
    https://hk.saowen.com/a/941d7724b2898f995836b3d8ef8b1ab2630cc6373a04bc3a55474230143fbc09
    [29] ROS系統 SLAM介紹與比較,
    https://pojenlai.wordpress.com/2015/07/16/ros-navigation-stack-%E7%B0%A1%E4%BB%8B/

    無法下載圖示 全文公開日期 2023/08/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE