簡易檢索 / 詳目顯示

研究生: 吳瑜庭
Yu-Ting Wu
論文名稱: 開發具簡易製程之可撓曲非鉑系對電極應用於提升室內低照度染料敏化太陽能電池之光電轉換效率
Developing Facile Processes for Fabricating Pt-free Flexible Counter Electrodes to Realize the Highly Efficient Dye-sensitized Solar Cells under Indoor Condition
指導教授: 葉旻鑫
Min-Hsin Yeh
口試委員: 何國川
Kuo-Chuan Ho
江志強
Jyh-Chiang Jiang
林律吟
Lu-Yin Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 130
中文關鍵詞: 硼氮共摻雜奈米碳管鈷錳硫化物導電高分子對電極染料敏化太陽能電池軟性基材量子點石墨烯低光照光伏氮摻雜聚苯胺氧化還原薄膜沉積理論計算
外文關鍵詞: Boron and nitrogen co-doped, Carbon nanotube, Cobalt manganese sulfide, Conductive polymer, Counter electrode, Dye-sensitized solar cell, Flexible substrate, Graphene quantum dot, Indoor light photovoltaic, Nitrogen doped, Polyaniline, Redox film deposition, Theoretical calculation
相關次數: 點閱:332下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著低功率的輕量穿戴式電子裝置需求日益增加,能收集環境光能實現穩定供電的光伏供電系統逐漸受到重視。在眾多的光伏電池中,具有低成本且能有效轉換弱光的染料敏化太陽能電池(Dye-Sensitized solar cells, DSSCs)在應用於室內低照度環境下極具優勢;具有生產成本低、簡易的元件結構以及具可撓曲元件的特性使得DSSC擁有導入至穿戴式電子裝置實現永續自驅動元件的潛力。然而,具有良好電催化活性的鉑金薄膜對電極在物理機械強度與鍍膜製程限制了可撓曲DSSC的發展。因此,本論文的研究主軸將著重於開發簡易製程來製備具有高機械穩定性與高電催化活性的可撓曲非鉑系對電極薄膜及其應用於室內低照度環境以實現輕量穿戴式電子裝置的願景。
    在可撓DSSC中,對電極材料應具有良好的電催化活性且與基材之間須具有高附著性。常見的對電極製備方式可分為濕式製程(如:噴塗、浸漬以及旋轉塗佈等)與乾式製程(如:濺鍍、化學氣相沉積等)。濕式製程雖具有低成本、操作簡單等優點,但仍需依靠有機黏著劑來增強薄膜與基材間的附著力進而間接影響電催化薄膜的催化能力;而乾式製程的嚴苛操作條件及昂貴的設備成本提高了整體元件的商業競爭性。因此,在本論文的第四章中嘗試建立簡易氧化還原薄膜沉積技術用於製備非鉑系對電極薄膜,利用過錳酸鉀作為表面錨定氧化劑與醋酸鈷產生氧化還原反應進而沉積鈷錳羥基氧化物於基材表面,此沉積技術不受限於基材材質及其表面粗糙度,且具有成本低、低製備門檻、可大面積製作且元素均勻度高的優勢。基於上述製程優勢,此薄膜將進一步透過高溫硫化的方式將鈷錳羥基氧化物轉化成為鈷錳硫化物以提供良好的電催化能力。透過控制薄膜沉積反應中前驅物之比例來進一步探討在不同金屬比例的鈷錳硫化物對三碘離子的電催化還原能力,研究結果顯示最適化鈷錳莫爾比於3:1下擁有最佳的電催化活性,其DSSC元件效能可達到7.41 ± 0.17%,非常接近使用鉑金對電極的DSSC元件效能(8.10 ± 0.09%)。此外,為了測試鈷錳硫化物薄膜與基材之間的附著性,此研究利用重複撕黏膠帶來進行測試,結果顯示重複撕黏膠帶50次後鈷錳硫化物薄膜沒有顯著的剝離情況,顯示鈷錳硫化物薄膜與基材之間擁有絕佳的附著性,綜上所述可知本研究所提出之鍍膜製程在應用於製備高穩定性可撓曲對電極相當具有潛力。
    另一方面,近幾年來已有許多研究著重於探討DSSC元件在室內低照度環境下具有相當高的光電轉換效率,然而針對低照度條件下DSSC對電極材料的研究卻尚未成熟。因此在本研究第五章中,將開發硼氮共摻雜石墨烯量子點修飾奈米碳管(BN-GQD/CNT)複合材料並進一步探討BN-GQD/CNT對電極在不同光強度下的DSSC元件效能。從理論計算結果中可得知硼氮共摻雜石墨烯(BNG)與鉑金表面在低電荷密度條件(近似低照度環境)下,碘離子可輕易地從BNG表面脫附進而加速其反應速率,顯示BNG相比於鉑金在低照度下擁有更好的電催化能力。使用室內LED燈作為模擬光源,使用BN-GQD/CNT對電極的DSSC元件在6000勒克斯光強度下的元件效能可達到13.03 ± 0.75%,高於使用鉑金對電極的元件效率(10.64 ± 0.31%),本章節結果成功透過理論計算與實驗結果驗證對電極催化能力將受到光照條件的影響。
    在不同光強度的光電轉換效率進一步成功證實理論計算結果。建立在上述結論,本論文在第六章更進一步設計適合應用在低照度環境下的可撓曲非鉑系對電極應用於DSSC中;本研究設計氮摻雜石墨烯量子點(N-GQD)導入聚苯胺(PANI)導電高分子中,借助N-GQD在弱光下的優勢及PANI可透過電聚合生長在軟性基材上的特性,成功合成N-GQD/PANI複合薄膜作為具有高弱光效率的軟性對電極。導入N-GQD的複合薄膜相比於PANI具有更緻密的奈米纖維結構,從光伏結果顯示N-GQD導入PANI中可以提升光伏特性參數中的填充因子(Fill factor, FF)及短路電流(Short-circuit current, JSC),顯示N-GQD除了可提升電催化活性之外,N-GQD中的π電子與PANI中的極化子(Polaron)形成電子-極化子偶合更可進一步提升薄膜導電性;因此相較於使用PANI對電極的元件效能(6.48 ± 0.14%),N-GQD/PANI可將效能提升至6.89 ± 0.48%。


    According to the growth in demand for low-power wearable electronic devices, photovoltaic power systems have attracted attention for serving as an uninterrupted power supply. Among all photovoltaics, dye-sensitized solar cells (DSSCs) have the great potential to introduce into wearable electronic devices to realize sustainable self-powered systems because of the novel advantages of ultrahigh efficiency under indoor conditions and manufacturing feasibility for flexible devices. In DSSCs, Pt with promising electrocatalytic activity is widely used as a counter electrode (CE). However, the weak mechanical strength and expensive procedure for fabricating large surface Pt thin film restrict the development and feasibility of flexible DSSCs. Therefore, this thesis focused on developing the facile processes to prepare a flexible Pt-free CE with high mechanical stability and high electrocatalytic activity to realize flexible DSSC with high efficiency under indoor conditions for wearable electronic device application.
    For flexible DSSC devices, the electrocatalytic thin film on CEs should have the excellent electrocatalytic ability and good adhesion. The common methods for depositing electrocatalytic thin films on CE can be simply divided into the wet process (such as drop-casting, spray/dip/spin coating, etc.) and the dry process (such as sputtering, chemical vapor deposition, etc.) However, removing organic residue for wet processes and severe operating conditions for dry processes limits the feasibility of low-cost flexible DSSCs and correlative application in indoor conditions. Therefore, in Chapter 4, the feasible redox deposition was proposed to fabricate Pt-free flexible CE for DSSCs. KMnO4 was used as a surface anchoring oxidant to trigger redox reactions with Co(OAc)2 on the substrate for depositing CoMn oxyhydroxide on the arbitrary substrate. As-proposed feasible redox deposition has the advantages of good adhesion, low cost, simple fabrication, and good uniformity. Based on these advantages, the CoMn oxyhydroxide film was further converted into CoMn sulfide by sulfurization process. The CoMn sulfide showed excellent electrocatalytic ability for I3- reduction. After optimizing the Co/Mn ratio, the photovoltaic efficiency of DSSC with CoMn sulfide CE was 7.41 ± 0.17%, which was close to the performance of DSSC with Pt CE (8.10 ± 0.09%). Furthermore, the tearing test with adhesive tape clearly revealed that CoMn sulfide film had promising robustness after 50 times test, which showed CoMn sulfide film had good adhesion. Conclusively, the CoMn sulfide could be coated on arbitrary substrates with good adhesion, indicating as-proposed redox deposition process exhibited great potential for preparing flexible CEs with high stability.
    Since DSSCs can effectively convert indoor light, several studies have focused on the potential application of DSSC under indoor conditions. In Chapter 5, according to theoretical calculation, compared to Pt surface, the B and N co-doped graphene (BNG) could facilitate desorption of desorbed I* under relatively lower charging density to enhance the reaction rate of I3- reduction reaction. In order to confirm the theoretical result, the B and N co-doped graphene quantum dot anchored carbon nanotube (BN-GQD/CNT) was used to evaluate the corresponding efficiency of DSSCs under the different intensities. Using the LED lights as light sources, DSSC with BN-GQD/CNT CE exhibited a higher η of 13.03 ± 0.75% than that with Pt CE (10.64 ± 0.31%) under the 6000 Lux illumination.
    Inspired by previous results, in Chapter 6, N doped graphene quantum dot (N-GQD) embedded polyaniline (PANI) conductive polymer was proposed as Pt-free flexible CE for indoor DSSCs. The surface morphology of PANI became denser after introducing the N-GQD under electropolymerization. As a result, the DSSC with N-GQD/PANI (6.89 ± 0.48%) had higher photovoltaic efficiency than that with pristine PANI CE (6.48 ± 0.14%). The photovoltaic parameter clearly revealed that introducing N-GQD into PANI could increase the value of short-circuit current (JSC) and fill factor (FF) for DSSC devices, which may be attributed that N-GQD could not only improve the electrocatalytic ability for I3- reduction, but also increase the conductivity for pristine PANI by electron-polaron coupling with N-GQD.

    中文摘要 I Abstract III Table of Contents V List of Tables VIII List of Figures IX Nomenclature XIV Chapter 1 Introduction 1 1.1 Overview of the Development of Solar Cells 1 1.2 Dye-Sensitized Solar Sell (DSSCs) 4 1.2.1 Background of DSSCs 4 1.2.2 Structure and mechanism of DSSCs 5 1.3 Counter Electrodes of DSSCs 10 1.3.1 Carbon material 11 1.3.2 Conducting polymers 13 1.3.3 Transition metal compound 14 Chapter 2 Literature Review and Research Scope 16 2.1 Review of Flexible DSSCs Device and Indoor DSSC 16 2.2 The Counter Electrode for Flexible DSSC 22 2.3 The Research of Counter Electrode for DSSC under Dim Light Illumination 25 2.4 Motivation and Research Scope 27 Chapter 3 Experimental Procedure 32 3.1 Experimental Chemicals and Instrument 32 3.3.1 Photovoltaic properties for DSSCs. 33 3.1.2 Electrochemical Analysis for DSSCs. 34 3.1.3 X-Ray Diffractometer (XRD) 38 3.1.4 Field Emission-Scanning Electron Microscopy (FE-SEM) 39 3.1.5 Energy-dispersive X-ray spectroscopy (EDX) 40 3.1.6 X-ray photoelectron spectroscopy (XPS) 41 3.1.7 Raman Spectroscopy 42 3.1.8 Ultraviolet-visible (UV-Vis) spectroscopy 43 3.2 Experimental Materials 45 3.3 Experimental Procedure 46 3.3.1 Synthesis and fabrication of different CoMn sulfide thin film (Chapter 4) 46 3.3.2 Preparation of GQD and dual-doped GQDs (BN-GQDs)(Chapter 5) 47 3.3.3 Synthesis of GQD/CNT and heteroatom-doped GQD/CNT (BN-GQD/CNT) (Chapter 5) 47 3.3.4 Preparation of various counter electrodes 48 3.3.5 Preparation of PANI, PANI/N-GQD films as counter electrodes (chapter 6) 48 3.3.6 Fabrication of Photoanodes and DSSCs 48 Chapter 4 Developing a Facile Fabrication Process for Robust CoMn Sulfide Nanolayer as Flexible Counter Electrode for Dye Sensitized Solar Cell 50 4.1 Motivation and Conceptual Design 50 4.2 Results and Discussion 53 4.2.1 Characterization of CoMn sulfide 53 4.2.2 Optimized the deposition layer of CoMn sulfide 56 4.2.3 CoMn sulfide with different precursor molar ratio of Co and Mn 59 4.2.4 Robustabilty about CoMn sulfide thin film 65 4.3 Summary 68 Chapter 5 Developing Heteroatom Doping Graphene Quantum Dot Material as Counter Electrode for Dye Sensitized Solar Sell under the Dim Light Illumination 69 5.1 Motivation and Conceptual Design 69 5.2 Results and Discussion 72 5.2.1 Characterization of BN-GQDs 72 5.2.2 The efficiency of DSSC device under the different light intensity 75 5.3 Summary 82 Chapter 6 N-doped Graphene Quantum Dot Anchored into Polyaniline as Counter Electrode with High Indoor Efficiency for Flexible Dye Sensitized Solar Cell 83 6.1 Motivation and Conceptual Design 83 6.2 Results and Discussion 85 6.2.1 Characterization of GQD and N-GQDs 85 6.2.2 Characterizations of PANI, PANI/GQD and PANI/N-GQD films 89 6.2.3 CV curve and photovoltaic performance of PANI, PANI/GQD and PANI/N-GQD films 91 6.3 Summary 94 Chapter 7 Conclusion and Suggestion 95 7.1 Conclusion 95 7.2 Suggestions and Prospects 96 References 97 Appendix A Supporting Information 110

    [1] S.R. Bull, Renewable energy today and tomorrow, Proceedings of the IEEE, 89, 2001, 1216-1226.
    [2] M. Grätzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorganic chemistry, 44 , 2005, 6841-6851.
    [3] M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl‐Ebinger, A.W. Ho‐Baillie, Solar cell efficiency tables (version 52), Progress in Photovoltaics: Research and Applications, 26, 2018, 427-436.
    [4] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, Journal of the American Chemical Society, 131, 2009, 6050-6051.
    [5] F. Dimroth, T.N. Tibbits, M. Niemeyer, F. Predan, P. Beutel, C. Karcher, E. Oliva, G. Siefer, D. Lackner, P. Fuß-Kailuweit, Four-junction wafer-bonded concentrator solar cells, IEEE Journal of Photovoltaics, 6, 2015, 343-349.
    [6] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, Y. Wei, Counter electrodes in dye-sensitized solar cells, Chem Soc Rev, 46, 2017, 5975-6023.
    [7] H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell, Nature, 261, 1976, 402-403.
    [8] S.-W. Wang, C.-C. Chou, F.-C. Hu, K.-L. Wu, Y. Chi, J.N. Clifford, E. Palomares, S.-H. Liu, P.-T. Chou, T.-C. Wei, Panchromatic Ru (II) sensitizers bearing single thiocyanate for high efficiency dye sensitized solar cells, Journal of Materials Chemistry A, 2, 2014, 17618-17627.
    [9] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes, Chemical communications, 51, 2015, 15894-15897.
    [10] Y. Cao, Y. Liu, S.M. Zakeeruddin, A. Hagfeldt, M. Grätzel, Direct contact of selective charge extraction layers enables high-efficiency molecular photovoltaics, Joule, 2, 2018, 1108-1117.
    [11] Y.-S. Yen, H.-H. Chou, Y.-C. Chen, C.-Y. Hsu, J.T. Lin, Recent developments in molecule-based organic materials for dye-sensitized solar cells, Journal of Materials Chemistry, 22, 2012, 8734-8747.
    [12] J.B. Baxter, Commercialization of dye sensitized solar cells: Present status and future research needs to improve efficiency, stability, and manufacturing, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 30, 2012, 020801.
    [13] L.-Y. Lin, M.-H. Yeh, C.-P. Lee, C.-Y. Chou, K.-C. Ho, Flexible dye-sensitized solar cells with one-dimensional ZnO nanorods as electron collection centers in photoanodes, Electrochimica acta, 88, 2013, 421-428.
    [14] T. Brown, F. De Rossi, F. Di Giacomo, G. Mincuzzi, V. Zardetto, A. Reale, A. Di Carlo, Progress in flexible dye solar cell materials, processes and devices, Journal of Materials Chemistry A, 2, 2014, 10788-10817.
    [15] H.-N. Kim, J.H. Moon, Enhanced Photovoltaic Properties of Nb2O5-Coated TiO2 3D Ordered Porous Electrodes in Dye-Sensitized Solar Cells, ACS Applied Materials & Interfaces, 4, 2012, 5821-5825.
    [16] M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes, Materials Today, 18, 2015, 155-162.
    [17] U.V. Desai, C. Xu, J. Wu, D. Gao, Hybrid TiO2–SnO2 Nanotube Arrays for Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, 117, 2013, 3232-3239.
    [18] J. Gong, J. Liang, K. Sumathy, Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials, Renewable and Sustainable Energy Reviews, 16, 2012, 5848-5860.
    [19] A. Mishra, M.K. Fischer, P. Bauerle, Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules, Angew Chem Int Ed Engl, 48, 2009, 2474-2499.
    [20] S. Ahmad, E. Guillen, L. Kavan, M. Grätzel, M.K. Nazeeruddin, Metal free sensitizer and catalyst for dye sensitized solar cells, Energy & Environmental Science, 6, 2013, 3439-3466.
    [21] P. Semalti, S.N. Sharma, Dye sensitized solar cells (DSSCs) electrolytes and natural photo-sensitizers: a review, Journal of nanoscience and nanotechnology, 20, 2020, 3647-3658.
    [22] H.A. Maddah, V. Berry, S.K. Behura, Biomolecular photosensitizers for dye-sensitized solar cells: Recent developments and critical insights, Renewable and Sustainable Energy Reviews, 121, 2020, 109678.
    [23] T.M.W.J. Bandara, H.D.N.S. Fernando, E.J. Rupasinghe, J.L. Ratnasekera, P.H.N.J. Chandrasena, M. Furlani, I. Albinsson, M.A.K.L. Dissanayake, B.E. Mellander, N719 and N3 dyes for quasi-solid state dye sensitized solar cells - A comparative study using polyacrylonitrile and CsI based electrolytes, Ceylon Journal of Science, 45, 2016.
    [24] A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Gratzel, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency, Science, 334, 2011, 629-634.
    [25] A. Yella, S. Mathew, S. Aghazada, P. Comte, M. Grätzel, M.K. Nazeeruddin, Dye-sensitized solar cells using cobalt electrolytes: the influence of porosity and pore size to achieve high-efficiency, Journal of Materials Chemistry C, 5, 2017, 2833-2843.
    [26] N.C.D. Nath, J.-J. Lee, Binary redox electrolytes used in dye-sensitized solar cells, Journal of Industrial and Engineering Chemistry, 78, 2019, 53-65.
    [27] G. Oskam, B.V. Bergeron, G.J. Meyer, P.C. Searson, Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells, The Journal of Physical Chemistry B, 105, 2001, 6867-6873.
    [28] J. Min, J. Won, Y.S. Kang, S. Nagase, Benzimidazole derivatives in the electrolyte of new-generation organic dye-sensitized solar cells with an iodine-free redox mediator, Journal of Photochemistry and Photobiology A: Chemistry, 219, 2011, 148-153.
    [29] Y. Liu, J.R. Jennings, Q. Wang, Efficient dye-sensitized solar cells using a tetramethylthiourea redox mediator, ChemSusChem, 6, 2013, 2124-2131.
    [30] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, Journal of the American Chemical Society, 115, 1993, 6382-6390.
    [31] A. Listorti, B. O’Regan, J.R. Durrant, Electron Transfer Dynamics in Dye-Sensitized Solar Cells, Chemistry of Materials, 23, 2011, 3381-3399.
    [32] E. Olsen, G. Hagen, S.E. Lindquist, Dissolution of platinum in methoxy propionitrile containing LiI/I2, Solar Energy Materials and Solar Cells, 63, 2000, 267-273.
    [33] Y. Xiao, J. Wu, G. Yue, J. Lin, M. Huang, L. Fan, Z. Lan, Fabrication of high performance Pt/Ti counter electrodes on Ti mesh for flexible large-area dye-sensitized solar cells, Electrochimica acta, 58, 2011, 621-627.
    [34] F.-Y. Kuo, F.-S. Lin, M.-H. Yeh, M.-S. Fan, L.-Y. Hsiao, J.-J. Lin, R.-J. Jeng, K.-C. Ho, Synthesis of surfactant-free and morphology-controllable vanadium diselenide for efficient counter electrodes in dye-sensitized solar cells, ACS applied materials & interfaces, 11, 2019, 25090-25099.
    [35] S. Yun, A. Hagfeldt, T. Ma, Pt‐free counter electrode for dye‐sensitized solar cells with high efficiency, Advanced Materials, 26, 2014, 6210-6237.
    [36] H. Wang, J. Gao, J. Zhu, J.-Y. Ma, H. Zhou, J. Xiao, M. Wu, Design bifunctional nitrogen doped flexible carbon sphere electrode for dye-sensitized solar cell and supercapacitor, Electrochimica Acta, 334, 2020, 135582.
    [37] M.-H. Yeh, Y.-A. Leu, W.-H. Chiang, Y.-S. Li, G.-L. Chen, T.-J. Li, L.-Y. Chang, L.-Y. Lin, J.-J. Lin, K.-C. Ho, Boron-doped carbon nanotubes as metal-free electrocatalyst for dye-sensitized solar cells: Heteroatom doping level effect on tri-iodide reduction reaction, Journal of Power Sources, 375, 2018, 29-36.
    [38] G. Wang, W. Xing, S. Zhuo, Nitrogen-doped graphene as low-cost counter electrode for high-efficiency dye-sensitized solar cells, Electrochimica Acta, 92, 2013, 269-275.
    [39] A.G. Kannan, J. Zhao, S.G. Jo, Y.S. Kang, D.-W. Kim, Nitrogen and sulfur co-doped graphene counter electrodes with synergistically enhanced performance for dye-sensitized solar cells, Journal of Materials Chemistry A, 2, 2014, 12232-12239.
    [40] J. Dong, S. Jia, J. Chen, B. Li, J. Zheng, J. Zhao, Z. Wang, Z. Zhu, Nitrogen-doped hollow carbon nanoparticles as efficient counter electrodes in quantum dot sensitized solar cells, Journal of Materials Chemistry, 22, 2012, 9745-9750.
    [41] Q. Luo, F. Hao, S. Wang, H. Shen, L. Zhao, J. Li, M. Grätzel, H. Lin, Highly Efficient Metal-Free Sulfur-Doped and Nitrogen and Sulfur Dual-Doped Reduced Graphene Oxide Counter Electrodes for Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, 118, 2014, 17010-17018.
    [42] Y.-C. Chang, C.-A. Tseng, C.-P. Lee, S.-B. Ann, Y.-J. Huang, K.-C. Ho, Y.-T. Chen, N- and S-codoped graphene hollow nanoballs as an efficient Pt-free electrocatalyst for dye-sensitized solar cells, Journal of Power Sources, 449, 2020, 227470.
    [43] C.-S. Wu, T.-W. Chang, H. Teng, Y.-L. Lee, High performance carbon black counter electrodes for dye-sensitized solar cells, Energy, 115, 2016, 513-518.
    [44] C. Yu, Z. Liu, X. Meng, B. Lu, D. Cui, J. Qiu, Nitrogen and phosphorus dual-doped graphene as a metal-free high-efficiency electrocatalyst for triiodide reduction, Nanoscale, 8, 2016, 17458-17464.
    [45] S.-H. Park, B.-K. Kim, W.-J. Lee, Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells, Journal of Power Sources, 239, 2013, 122-127.
    [46] W.J. Lee, E. Ramasamy, D.Y. Lee, J.S. Song, Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes, ACS applied materials & interfaces, 1, 2009, 1145-1149.
    [47] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature chemistry, 6, 2014, 242-247.
    [48] S.-M. Jung, I.T. Choi, K. Lim, J. Ko, J.C. Kim, J.-J. Lee, M.J. Ju, H.K. Kim, J.-B. Baek, B-Doped Graphene as an Electrochemically Superior Metal-Free Cathode Material As Compared to Pt over a Co(II)/Co(III) Electrolyte for Dye-Sensitized Solar Cell, Chemistry of Materials, 26, 2014, 3586-3591.
    [49] K. Saranya, M. Rameez, A. Subramania, Developments in conducting polymer based counter electrodes for dye-sensitized solar cells – An overview, European Polymer Journal, 66, 2015, 207-227.
    [50] H. Gu, H. Zhang, C. Gao, C. Lian, J. Gu, Z. Guo, New Functions of Polyaniline, ES Materials & Manufacturing, 2018.
    [51] C. Bu, Q. Tai, Y. Liu, S. Guo, X. Zhao, A transparent and stable polypyrrole counter electrode for dye-sensitized solar cell, Journal of power sources, 221, 2013, 78-83.
    [52] T.H. Lee, K. Do, Y.W. Lee, S.S. Jeon, C. Kim, J. Ko, S.S. Im, High-performance dye-sensitized solar cells based on PEDOT nanofibers as an efficient catalytic counter electrode, Journal of Materials Chemistry, 22, 2012, 21624-21629.
    [53] B. Piro, G. Mattana, S. Zrig, G. Anquetin, N. Battaglini, D. Capitao, A. Maurin, S. Reisberg, Fabrication and use of organic electrochemical transistors for sensing of metabolites in aqueous media, Applied Sciences, 8, 2018, 928.
    [54] J.M. Pringle, V. Armel, D.R. MacFarlane, Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells, Chemical Communications, 46, 2010, 5367-5369.
    [55] S. Ahmad, T. Bessho, F. Kessler, E. Baranoff, J. Frey, C. Yi, M. Grätzel, M.K. Nazeeruddin, A new generation of platinum and iodine free efficient dye-sensitized solar cells, Physical Chemistry Chemical Physics, 14, 2012, 10631-10639.
    [56] S. Ahmad, J.H. Yum, H.J. Butt, M.K. Nazeeruddin, M. Grätzel, Efficient platinum‐free counter electrodes for dye‐sensitized solar cell applications, ChemPhysChem, 11, 2010 2814-2819.
    [57] K.-M. Lee, P.-Y. Chen, C.-Y. Hsu, J.-H. Huang, W.-H. Ho, H.-C. Chen, K.-C. Ho, A high-performance counter electrode based on poly (3, 4-alkylenedioxythiophene) for dye-sensitized solar cells, Journal of Power Sources, 188, 2009, 313-318.
    [58] J. Wu, Y. Li, Q. Tang, G. Yue, J. Lin, M. Huang, L. Meng, Bifacial dye-sensitized solar cells: A strategy to enhance overall efficiency based on transparent polyaniline electrode, Scientific Reports, 4, 2014, 4028.
    [59] T.-T. Duong, T.Q. Tuan, D.V.A. Dung, N. Van Quy, D.-L. Vu, M.H. Nam, N.D. Chien, S.-G. Yoon, A.-T. Le, Application of polyaniline nanowires electrodeposited on the FTO glass substrate as a counter electrode for low-cost dye-sensitized solar cells, Current Applied Physics, 14, 2014, 1607-1611.
    [60] G. Yue, J. Wu, Y. Xiao, J. Lin, M. Huang, Z. Lan, Application of poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate/polypyrrole counter electrode for dye-sensitized solar cells, The Journal of Physical Chemistry C, 116, 2012, 18057-18063.
    [61] H. Shi, Y. Xie, P. Wei, H. Chen, Y. Qiang, Application of Co-Mo bimetal/carbon composite in dye-sensitized solar cells and its research on synergy mechanism, Journal of Solid State Electrochemistry, 24, 2020, 753-759.
    [62] Z. Shi, K. Deng, L. Li, Pt-free and efficient counter electrode with nanostructured CoNi2S4 for dye-sensitized solar cells, Sci Rep, 5, 2015, 9317.
    [63] C.-W. Kung, H.-W. Chen, C.-Y. Lin, K.-C. Huang, R. Vittal, K.-C. Ho, CoS Acicular Nanorod Arrays for the Counter Electrode of an Efficient Dye-Sensitized Solar Cell, ACS Nano, 6, 2012, 7016-7025.
    [64] Q.-S. Jiang, W. Cheng, J. Wu, W. Li, K. Yan, An electrodeposited amorphous cobalt sulphide nanobowl array with secondary nanosheets as a multifunctional counter electrode for enhancing the efficiency in a dye-sensitized solar cell, Electrochimica Acta, 324, 2019, 134896.
    [65] X. Cui, Z. Xie, Y. Wang, Novel CoS 2 embedded carbon nanocages by direct sulfurizing metal–organic frameworks for dye-sensitized solar cells, Nanoscale, 8, 2016, 11984-11992.
    [66] H. Sun, L. Zhang, Z.-S. Wang, Single-crystal CoSe 2 nanorods as an efficient electrocatalyst for dye-sensitized solar cells, Journal of Materials Chemistry A, 2, 2014, 16023-16029.
    [67] J. Zhang, Z. Wang, X. Li, J. Yang, C. Song, Y. Li, J. Cheng, Q. Guan, B. Wang, Flexible Platinum-Free Fiber-Shaped Dye Sensitized Solar Cell with 10.28% Efficiency, ACS Applied Energy Materials, 2, 2019, 2870-2877.
    [68] Y.-J. Huang, C.-P. Lee, H.-W. Pang, C.-T. Li, M.-S. Fan, R. Vittal, K.-C. Ho, Microemulsion-controlled synthesis of CoSe2/CoSeO3 composite crystals for electrocatalysis in dye-sensitized solar cells, Materials Today Energy, 6, 2017, 189-197.
    [69] J. Ou, C. Gong, J. Xiang, J. Liu, Noble metal-free Co@ N-doped carbon nanotubes as efficient counter electrode in dye-sensitized solar cells, Solar Energy, 174, 2018, 225-230.
    [70] C. Wu, B. Chen, X. Zheng, S. Priya, Scaling of the flexible dye sensitized solar cell module, Solar Energy Materials and Solar Cells, 157, 2016, 438-446.
    [71] M.G. Kang, N.-G. Park, K.S. Ryu, S.H. Chang, K.-J. Kim, A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate, Solar Energy Materials and Solar Cells, 90, 2006, 574-581.
    [72] T. Miyasaka, Y. Kijitori, Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous TiO2 Layers, Journal of The Electrochemical Society, 151, 2004, A1767.
    [73] T. Miyasaka, M. Ikegami, Y. Kijitori, Photovoltaic Performance of Plastic Dye-Sensitized Electrodes Prepared by Low-Temperature Binder-Free Coating of Mesoscopic Titania, Journal of the Electrochemical Society, 154, 2007, A455.
    [74] S. Ito, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Péchy, M.K. Nazeeruddin, M. Grätzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO 2 photoanode, Chemical communications, 2006, 4004-4006.
    [75] F. Giordano, E. Petrolati, T.M. Brown, A. Reale, A. Di Carlo, Series-connection designs for dye solar cell modules, IEEE Transactions on Electron Devices, 58, 2011, 2759-2764.
    [76] H.C. Weerasinghe, P.M. Sirimanne, G.P. Simon, Y.B. Cheng, Cold isostatic pressing technique for producing highly efficient flexible dye‐sensitised solar cells on plastic substrates, Progress in Photovoltaics: Research and Applications, 20, 2012, 321-332.
    [77] Y. Li, D.-K. Lee, J.Y. Kim, B. Kim, N.-G. Park, K. Kim, J.-H. Shin, I.-S. Choi, M.J. Ko, Highly durable and flexible dye-sensitized solar cells fabricated on plastic substrates: PVDF-nanofiber-reinforced TiO 2 photoelectrodes, Energy & Environmental Science, 5, 2012, 8950-8957.
    [78] K.K. Sonigara, H.K. Machhi, J.V. Vaghasiya, A. Gibaud, S.C. Tan, S.S. Soni, A smart flexible solid state photovoltaic device with interfacial cooling recovery feature through thermoreversible polymer gel electrolyte, Small, 14, 2018, 1800842.
    [79] S. Sasidharan, S.C. Pradhan, A. Jagadeesh, B.N. Nair, A.A.P. Mohamed, N.U. K. N, S. Soman, U.N.S. Hareesh, Bifacial Dye-Sensitized Solar Cells with Enhanced Light Scattering and Improved Power Conversion Efficiency under Full Sun and Indoor Light Conditions, ACS Applied Energy Materials, 3, 2020, 12584-12595.
    [80] K.S.K. Reddy, Y.-C. Liu, H.-H. Chou, K. Kala, T.-C. Wei, C.-Y. Yeh, Synthesis and characterization of novel β-bis (N, N-diarylamino)-substituted porphyrin for dye-sensitized solar cells under 1 sun and dim light conditions, ACS applied materials & interfaces, 10, 2018, 39970-39982.
    [81] M.B. Desta, N.S. Vinh, C.P. Kumar, S. Chaurasia, W.-T. Wu, J.T. Lin, T.-C. Wei, E.W.-G. Diau, Pyrazine-incorporating panchromatic sensitizers for dye sensitized solar cells under one sun and dim light, Journal of Materials Chemistry A, 6, 2018, 13778-13789.
    [82] S. Venkatesan, I.-P. Liu, C.-W. Li, C.-M. Tseng-Shan, Y.-L. Lee, Quasi-solid-state dye-sensitized solar cells for efficient and stable power generation under room light conditions, ACS Sustainable Chemistry & Engineering, 7, 2019, 7403-7411.
    [83] S. Venkatesan, I.-P. Liu, C.-M.T. Shan, H. Teng, Y.-L. Lee, Highly efficient indoor light quasi-solid-state dye sensitized solar cells using cobalt polyethylene oxide-based printable electrolytes, Chemical Engineering Journal, 394, 2020, 124954.
    [84] P. Hasin, M.A. Alpuche-Aviles, Y. Li, Y. Wu, Mesoporous Nb-doped TiO2 as Pt support for counter electrode in dye-sensitized solar cells, The Journal of Physical Chemistry C, 113, 2009, 7456-7460.
    [85] Y. Wang, C. Zhao, D. Qin, M. Wu, W. Liu, T. Ma, Transparent flexible Pt counter electrodes for high performance dye-sensitized solar cells, Journal of Materials Chemistry, 22, 2012, 22155-22159.
    [86] L. Yang, L. Wu, M. Wu, G. Xin, H. Lin, T. Ma, High-efficiency flexible dye-sensitized solar cells fabricated by a novel friction-transfer technique, Electrochemistry communications, 12, 2010, 1000-1003.
    [87] J. An, W. Guo, T. Ma, Enhanced Photoconversion Efficiency of All‐Flexible Dye‐Sensitized Solar Cells Based on a Ti Substrate with TiO2 Nanoforest Underlayer, Small, 8, 2012, 3427-3431.
    [88] S.-S. Kim, Y.-C. Nah, Y.-Y. Noh, J. Jo, D.-Y. Kim, Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells, Electrochimica Acta, 51, 2006, 3814-3819.
    [89] M. Gurulakshmi, A. Meenakshamma, G. Siddeswaramma, K. Susmitha, Y.V. Subbaiah, T. Narayana, M. Raghavender, Electrodeposited MoS2 counter electrode for flexible dye sensitized solar cell module with ionic liquid assisted photoelectrode, Solar Energy, 199, 2020, 447-452.
    [90] K.S. Lee, Y. Lee, J.Y. Lee, J.H. Ahn, J.H. Park, Flexible and platinum‐free dye‐sensitized solar cells with conducting‐polymer‐coated graphene counter electrodes, ChemSusChem, 5, 2012, 379-382.
    [91] S. Nagarajan, P. Sudhagar, V. Raman, W. Cho, K. Dhathathreyan, Y.S. Kang, A PEDOT-reinforced exfoliated graphite composite as a Pt-and TCO-free flexible counter electrode for polymer electrolyte dye-sensitized solar cells, Journal of Materials Chemistry A, 1, 2013, 1048-1054.
    [92] Y.-J. Huang, Y.-J. Lin, H.-J. Chien, Y.-F. Lin, K.-C. Ho, A pt-free pristine monolithic carbon aerogel counter electrode for dye-sensitized solar cells: Up to 20% under dim light illumination, Nanoscale, 11, 2019, 12507-12516.
    [93] H.-T. Chen, Y.-J. Huang, C.-T. Li, C.-P. Lee, J.T. Lin, K.-C. Ho, Boron Nitride/Sulfonated Polythiophene Composite Electrocatalyst as the TCO and Pt-Free Counter Electrode for Dye-Sensitized Solar Cells: 21% at Dim Light, ACS Sustainable Chemistry & Engineering, 8, 2020, 5251-5259.
    [94] C.-T. Li, C.-P. Lee, I.-T. Chiu, R. Vittal, Y.-J. Huang, T.-Y. Chen, H.-W. Pang, J.T. Lin, K.-C. Ho, Hierarchical TiO 1.1 Se 0.9-wrapped carbon cloth as the TCO-free and Pt-free counter electrode for iodide-based and cobalt-based dye-sensitized solar cells, Journal of Materials Chemistry A, 5, 2017, 14079-14091.
    [95] T.-Y. Chen, Y.-J. Huang, C.-T. Li, C.-W. Kung, R. Vittal, K.-C. Ho, Metal-organic framework/sulfonated polythiophene on carbon cloth as a flexible counter electrode for dye-sensitized solar cells, Nano Energy, 32, 2017, 19-27.
    [96] M.-N. Lu, J.-Y. Lin, T.-C. Wei, Exploring the main function of reduced graphene oxide nano-flakes in a nickel cobalt sulfide counter electrode for dye-sensitized solar cell, Journal of Power Sources, 332, 2016, 281-289.
    [97] Y.-J. Huang, H.-T. Chen, S.-B. Ann, C.-T. Li, J.T. Lin, C.-P. Lee, K.-C. Ho, Hierarchical urchin-like CoSe 2/CoSeO 3 electro-catalysts for dye-sensitized solar cells: up to 19% PCE under dim light illumination, Journal of Materials Chemistry A, 7, 2019, 26089-26097.
    [98] S. Wang, J. Tian, Recent advances in counter electrodes of quantum dot-sensitized solar cells, RSC advances, 6,2016, 90082-90099.
    [99] J. Colomer-Farrarons, P. Miribel-Català, A.I. Rodríguez-Villarreal, J. Samitier, Portable Bio-Devices: Design of electrochemical instruments from miniaturized to implantable devices, 2011.
    [100] A. Lasia, Modeling of experimental data, Electrochemical Impedance Spectroscopy and its Applications, Springer, 2014, pp. 301-321.
    [101] Y. Jiang, X. Qian, Y. Niu, L. Shao, C. Zhu, L. Hou, Cobalt iron selenide/sulfide porous nanocubes as high-performance electrocatalysts for efficient dye-sensitized solar cells, Journal of Power Sources, 369, 2017, 35-41.
    [102] A.A. Bunaciu, E.g. Udriştioiu, H.Y. Aboul-Enein, X-Ray Diffraction: Instrumentation and Applications, Critical Reviews in Analytical Chemistry, 45, 2015, 289-299.
    [103] K. Akhtar, S.A. Khan, S.B. Khan, A.M. Asiri, Scanning electron microscopy: Principle and applications in nanomaterials characterization, Handbook of materials characterization, Springer, 2018, pp. 113-145.
    [104] Y. Jusman, S.C. Ng, N.A. Abu Osman, Investigation of CPD and HMDS Sample Preparation Techniques for Cervical Cells in Developing Computer-Aided Screening System Based on FE-SEM/EDX, The Scientific World Journal 2014, 2014, 289817.
    [105] B.J. Venton, Ultraviolet-Visible (UV-Vis) Spectroscopy, JoVE Science Education Database. Analytical Chemistry, 2021.
    [106] S. Seneviratne, Y. Hu, T. Nguyen, G. Lan, S. Khalifa, K. Thilakarathna, M. Hassan, A. Seneviratne, A Survey of Wearable Devices and Challenges, IEEE Communications Surveys & Tutorials, 19, 2017, 2573-2620.
    [107] K. Yu, S. Rich, S. Lee, K. Fukuda, T. Yokota, T. Someya, Organic Photovoltaics: Toward Self-Powered Wearable Electronics, Proceedings of the IEEE, 107, 2019, 2137-2154.
    [108] J.S. Mondschein, J.F. Callejas, C.G. Read, J.Y. Chen, C.F. Holder, C.K. Badding, R.E. Schaak, Crystalline cobalt oxide films for sustained electrocatalytic oxygen evolution under strongly acidic conditions, Chemistry of Materials, 29, 2017, 950-957.
    [109] K.L. Pickrahn, S.W. Park, Y. Gorlin, H.B.R. Lee, T.F. Jaramillo, S.F. Bent, Active MnOx electrocatalysts prepared by atomic layer deposition for oxygen evolution and oxygen reduction reactions, Advanced Energy Materials, 2, 2012, 1269-1277.
    [110] Q. Jia, T.M. McCleskey, A. Burrell, Y. Lin, G. Collis, H. Wang, A. Li, S. Foltyn, Polymer-assisted deposition of metal-oxide films, nature materials, 3, 2004, 529-532.
    [111] L. Trotochaud, J.K. Ranney, K.N. Williams, S.W. Boettcher, Solution-cast metal oxide thin film electrocatalysts for oxygen evolution, Journal of the American Chemical Society, 134, 2012, 17253-17261.
    [112] R.D. Smith, M.S. Prévot, R.D. Fagan, Z. Zhang, P.A. Sedach, M.K.J. Siu, S. Trudel, C.P. Berlinguette, Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis, Science, 340, 2013, 60-63.
    [113] M.B. Stevens, L.J. Enman, A.S. Batchellor, M.R. Cosby, A.E. Vise, C.D. Trang, S.W. Boettcher, Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts, Chemistry of Materials, 29, 2017, 120-140.
    [114] R.-H. Jhang, C.-Y. Yang, M.-C. Shih, J.-Q. Ho, Y.-T. Tsai, C.-H. Chen, Redox-assisted multicomponent deposition of ultrathin amorphous metal oxides on arbitrary substrates: highly durable cobalt manganese oxyhydroxide for efficient oxygen evolution, Journal of Materials Chemistry A, 6, 2018, 17915-17928.
    [115] J. Liang, J. Li, H. Zhu, Y. Han, Y. Wang, C. Wang, Z. Jin, G. Zhang, J. Liu, One-step fabrication of large-area ultrathin MoS2 nanofilms with high catalytic activity for photovoltaic devices, Nanoscale, 8, 2016, 16017-16025.
    [116] J. Cao, Y. Hu, Y. Zhu, H. Cao, M. Fan, C. Huang, K. Shu, M. He, H.C. Chen, Synthesis of mesoporous nickel-cobalt-manganese sulfides as electroactive materials for hybrid supercapacitors, Chemical Engineering Journal, 405, 2021.
    [117] K.-Y. Lin, M.T. Nguyen, K. Waki, J.-C. Jiang, Boron and Nitrogen Co-doped Graphene Used As Counter Electrode for Iodine Reduction in Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, 122, 2018, 26385-26392.
    [118] 林冠宇, 理論計算於碳基材料為對電極和陰極材料在太陽能電池和儲能系統上的研究和應用, 化學工程系, 國立臺灣科技大學, 台北市, 2021, pp. 191.
    [119] D. Devadiga, M. Selvakumar, P. Shetty, M.S. Santosh, Dye-Sensitized Solar Cell for Indoor Applications: A Mini-Review, Journal of Electronic Materials, 50, 2021, 3187-3206.
    [120] A. Aslam, U. Mehmood, M.H. Arshad, A. Ishfaq, J. Zaheer, A. Ul Haq Khan, M. Sufyan, Dye-sensitized solar cells (DSSCs) as a potential photovoltaic technology for the self-powered internet of things (IoTs) applications, Solar Energy, 207, 2020, 874-892.
    [121] Y.-J. Huang, H.-T. Chen, S.-B. Ann, C.-T. Li, J.T. Lin, C.-P. Lee, K.-C. Ho, Hierarchical urchin-like CoSe2/CoSeO3 electro-catalysts for dye-sensitized solar cells: up to 19% PCE under dim light illumination, Journal of Materials Chemistry A, 7, 2019, 26089-26097.
    [122] D. Qu, M. Zheng, J. Li, Z. Xie, Z. Sun, Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications, Light: Science & Applications, 4, 2015, e364-e364.
    [123] P.N. Thang, L.X. Hung, D.N. Thuan, N.H. Yen, N.T.T. Hien, V.T.H. Hanh, N.C. Khang, J. Laverdant, P.T. Nga, Temperature-dependent Raman investigation and photoluminescence of graphene quantum dots with and without nitrogen-doping, Journal of Materials Science, 56, 2020, 4979-4990.
    [124] H.F. Wang, C. Tang, B. Wang, B.Q. Li, Q. Zhang, Bifunctional Transition Metal Hydroxysulfides: Room-Temperature Sulfurization and Their Applications in Zn-Air Batteries, Adv Mater, 29, 2017.

    無法下載圖示 全文公開日期 2026/10/27 (校內網路)
    全文公開日期 2026/10/27 (校外網路)
    全文公開日期 2026/10/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE