簡易檢索 / 詳目顯示

研究生: Fshatsion Berhane Gessesew
Fshatsion Berhane Gessesew
論文名稱: 碳基光熱轉換複合材料製備及其在太陽能蒸發與水純化之應用
Preparation of photothermal composites from carbon-based materials for solar evaporation and water purification
指導教授: 王志逢
Chih-Feng Wang
口試委員: 王志逢
Chih-Feng Wang
賴君義
Juin-Yih Lai
胡蒨傑
Chien-Chieh Hu
洪維松
Wei-Song Hung
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 124
中文關鍵詞: 太陽能蒸發光熱轉換材料奈米碳管聚二甲基矽氧烷碳纖維布汙水純化
外文關鍵詞: solar steam generation, photothermal material, carbon nanotube, polydimethylsiloxane, carbon cloth, water purification
相關次數: 點閱:370下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    水是生命不可或缺的重要成分,亦是經濟文明發展的基石。然而世界是上有近四分之一的人口生活在缺乏水的地區,且有97.5%的水資源是來自於鹹水。因此從過去便一直投注許多研究在綠色科技上來進行海水淡化。而其中,太陽能蒸氣產生法被視為水處理最有前景的技術之一,因為他利用的是地球最豐富的資源-陽光。光熱薄膜在太陽能蒸氣產生法中扮演著重要的角色,在水處理上比起使用傳統能源消耗的少,也更低廉。若將奈米材料的結構和光學性質控制得宜,則能增加其對光的吸收和光熱的轉換。近年來光熱薄膜被大量的發表著,然而在實際應用上則是受到諸多的挑戰,像是高成本、難以處理高濃度的鹽水和鹽累積。為了克服這些挑戰,我們以簡單且相對低廉的材料來進行光熱轉換薄膜的研究。
    在第一個研究中,我們利用真空過濾法將奈米碳管(carbon nanotube, CNT)堆積在濾紙(filter paper, FP)上,形成一個優秀的抗鹽和高光熱轉換效率的薄膜。CNT/FP薄膜表現出由兩個不同的層所形成的協同效應,CNT層吸收了更多的太陽光並轉換成熱,而FP則是作為水的輸送通道。在一個太陽光的照射下,CNT/FP薄膜有著1.16 kgm-2h-1的蒸發效率而其光熱轉換效率為65%。就算長期處於高濃度(20%wt氯化鈉)的鹽水中進行水處理也能表現出良好的鹽抗性。同時若再利用保麗龍(polystyrene foam, PS(F))作為隔熱材料加入CNT/FP中的話,在一太陽光的照射下蒸發速率和能量轉換效率增加到1.68 kgm-2h-1和98%且同時有快速的自清潔表現。
    在第二個研究中,我們用聚二甲基矽氧烷(polydimethylsiloxane, PDMS)改質碳纖維布(carbon cloth)使其具有易擴展和漂浮的性質,來應用於海水的太陽能淡化。利用噴塗法,將超輸水的PDMS包覆在超親水的carbon cloth上。而這個薄膜在一太陽光的照射下的水蒸發速度為1.12 kgm-2h-1,能量轉換效率則為64%。更重要的是在3.5wt%氯化鈉水溶液的實驗中聚二甲基矽氧烷/碳纖維布表現出完全抵擋鹽在薄膜上的累積的特性。擁有著好的成本效益、易擴展、自漂浮和鹽抗性的優勢,在太陽能蒸氣產生法的材料應用上在未來會是個相當具有潛力的選擇。此外這些薄膜(CNT/FP、CNT/FP-PS(F)和聚二甲基矽氧烷/碳纖維布)不僅可用於海水淡化,還能有效率的利用太陽能蒸氣產生法來進行汙水處理。

    關鍵字: 太陽能蒸發、光熱轉換材料、奈米碳管、聚二甲基矽氧烷、碳纖維布、汙水純化


    Abstract
    Water is a significant component of life as well as an integral keystone of any civilizations economic development. Although, near to quarter population of the world live in water stressed areas, and about 97.5% of the global water supply is saltwater, which is mainly obtained from the ocean. Therefore, for the past decades, significant efforts have been put into green technology research for saltwater purification. Among them, solar steam generation has been regarded as one of the most promising techniques for water purification because it is able to use the most abundant resources—solar energy. Photothermal membrane plays the major role in the solar steam generation technique, which can reduce the consumption of conventional energy (e.g., electricity, natural gas) and the cost of clean water production. Nanomaterials with well-controlled structure and optical properties can increase the light absorption and photothermal conversion. Recently, numerous photothermal membranes have been reported, however their practical applications are hindered by several challenges such as high cost and unable to purify high saline water, salt accumulation, complicated method of fabrication use, low efficiency and hard to scale up production. To overcome these challenges, we have been studied two photothermal membranes in a very easy method and using relatively low cost materials.
    In the first study, we have prepared an outstanding salt resistant and photothermal efficiency performance membrane by depositing carbon nanotubes (CNT) onto the surface of filter paper (FP) through vacuum filtration method. The prepared CNT/FP photothermal membrane presents synergy effect on its two different layers, the CNT layer absorbs more sunlight energy and convert into heat, on the other hand, FP layer is served as water transport channel. Under 1sun illumination, the CNT/FP membrane has evaporation rate of 1.16 kgm-2h-1 and its photothermal efficiency was 65%. Even in high saline water (20wt% NaCl) long time solar desalination, there was no salt accumulated on its upper layer, which means CNT/FP membrane is an outstanding salt resistant. Whereas, after polystyrene foam (PS(F)) employed as thermal insulator in to the CNT/FP, the evaporation rate and energy conversion efficiency was enhanced to 1.68 kgm-2h-1 and 98% respectively, with speedy self-cleaning behavior under 1sun solar illumination.
    In the second study, we have developed a scalable and floatable polydimethylsiloxane modified carbon cloth (PDMS/carbon cloth) photothermal membrane for seawater solar desalination application. Using spray coating method, the superhydrophobic PDMS was coated over the surface of the superhydrophilic carbon cloth. To this membrane, a water evaporation rate of 1.12 kgm-2h-1 and energy conversion efficiency of about 64% was attained under 1sun solar irradiation. More importantly, the PDMS/carbon cloth can resist any salt accumulation for solar desalination of 3.5wt% NaCl with an excellent stability performance. With the merits of cost-efficient, easy scalable manufacture, self-floating ability and salt resistant performance, the PDMS/carbon cloth may grasp a great potential as an alternative solar steam generation for practical applications in the future. Moreover, all the as prepared membranes (CNT/FP, CNT/FP-PS(F), and PDMS/carbon cloth) not only use for saltwater desalination, but also can effectively purify waste water through solar steam generation technology.

    Keywords: solar steam generation, photothermal material, carbon nanotube, polydimethylsiloxane, carbon cloth, water purification.

    Table of Contents Abstract……………………………………………………………………........................................………………………..i 中文摘要….............................................................................................................................................................iii Acknowledgements.........................................................................................................................................v List of Acronyms................................................................................................................................................vii Table of Contents..............................................................................................................................................x List of Figures......................................................................................................................................................xiii List of Tables........................................................................................................................................................xvii Chapter 1: Introduction and Literature review.......................................................................................1 Background..........................................................................................................................................................1 1.1. Global Water Access Status...................................................................................................................1 1.2. Global Energy Resources........................................................................................................................2 1.2.1. Sources of Energy..................................................................................................................................3 1.2.2. Solar Energy.............................................................................................................................................6 1.2.3. Solar Energy Conversion.....................................................................................................................7 1.3. Solar Steam Generation..........................................................................................................................9 1.4. Photothermal Materials..........................................................................................................................11 1.4.1. Conditions for Efficient photothermal Evaporation.................................................................14 1.4.2. Classification of photothermal materials.....................................................................................16 1.5. Motivation and Objectives....................................................................................................................31 Chapter 2: Experimental Section.................................................................................................................33 2.1. Materials and Chemicals.........................................................................................................................33 2.2. Preparation of CNT/FP membrane ....................................................................................................34 2.3. Preparation of CNT/FP-PS(F) device..................................................................................................35 2.4. Preparation of PDMS/carbon cloth membrane.............................................................................37 2.5. Solar Evaporation Set up........................................................................................................................37 2.6. Instruments of characterization and water quality detection..................................................39 Chapter 3: Result and discussions on CNT/FP and CNT/FP-PS(F) membrane...........................40 3.1. Investigation on CNT type and their effect......................................................................................40 3.2. Effect of CNT Concentration..................................................................................................................43 3.3. Wettability performance of CNT/FP membrane............................................................................46 3.4. Effect of heat loss and thermal insulation mechanism................................................................49 3.5. Water evaporation and photothermal efficiency measurement..............................................52 3.6. Salt rejection and Cyclic stability test of CNT/FP and CNT/FP-PS(F).......................................57 3.7. Estimation of Solar Thermal Energy Conversion Efficiency.........................................................60 3.8. Salt ion rejection performance...............................................................................................................64 3.9. Sewage water treatment...........................................................................................................................65 3.10. Summary.......................................................................................................................................................67 Chapter 4: Result and discussions on PDMS/carbon cloth membrane...........................................68 4.1. Morphology of PDMS/carbon cloth membrane..............................................................................68 4.2. Solar light absorbance and surface temperature analysis............................................................71 4.3. Water evaporation and energy conversion capacity of PDMS/carbon cloth........................75 4.4. Salt rejection, cyclic stability and durability ability of PDMS/carbon cloth.............................80 4.5. Ion rejection and sewage water treatment capacity of PDMS/carbon cloth..........................81 4.6. Summary............................................................................................................................................................83 Chapter 5: Conclusion and Future outlook...................................................................................................84 References ………………...............................................................…………………………………………………………85

    References
    [1] M.L. Broggi, Water desalination and purification using renewable energy technologies, (2013).
    [2] P. Xiao, J. Gu, C. Zhang, F. Ni, Y. Liang, J. He, L. Zhang, J. Ouyang, S.-W. Kuo, T. Chen, A scalable, low-cost and robust photo-thermal fabric with tunable and programmable 2D/3D structures towards environmentally adaptable liquid/solid-medium water extraction, Nano Energy, 65 (2019) 104002.
    [3] H. Sharon, K.S. Reddy, A review of solar energy driven desalination technologies, Renewable and Sustainable Energy Reviews, 41 (2015) 1080-1118.
    [4] A. Mark, Science and technology for water purification in the coming decades, Nature 452 (2008) 20.
    [5] M. Chandrashekara, A. Yadav, Water desalination system using solar heat: A review, Renewable and Sustainable Energy Reviews, 67 (2017) 1308-1330.
    [6] D. Molden, Water for food water for life: A comprehensive assessment of water management in agriculture, Routledge, 2013.
    [7] G. Ni, S.H. Zandavi, S.M. Javid, S.V. Boriskina, T.A. Cooper, G. Chen, A salt-rejecting floating solar still for low-cost desalination, Energy & Environmental Science, 11 (2018) 1510-1519.
    [8] F.F. Gong, H. Li, W. Wang, J. Huang, D.D. Xia, J. Liao, M. Wu, D.V. Papavassiliou, Scalable, eco-friendly and ultrafast solar steam generators based on one-step melamine-derived carbon sponges toward water purification, Nature Energy, 58 (2019) 322-330.
    [9] W.A. Jury, H.J. Vaux Jr, The emerging global water crisis: managing scarcity and conflict between water users, Advances in agronomy, 95 (2007) 1-76.
    [10] W.T. Xie, Y.J. Dai, R.Z. Wang, K. Sumathy, Concentrated solar energy applications using Fresnel lenses: A review, Renewable and Sustainable Energy Reviews, 15 (2011) 2588-2606.
    [11] S.A. Kalogirou, Solar energy engineering: processes and systems, Academic Press, 2013.
    [12] X. Wu, G.Y. Chen, G. Owens, D. Chu, H. Xu, Photothermal materials: a key platform enabling highly efficient water evaporation driven by solar energy, Materials Today Energy, 12 (2019) 277-296.
    [13] G.W. Crabtree, N.S. Lewis, Solar energy conversion, Physics today, 60 (2007) 37-42.
    [14] P.G.V. Sampaio, M.O.A. González, Photovoltaic solar energy: Conceptual framework, Renewable and Sustainable Energy Reviews, 74 (2017) 590-601.
    [15] N. Yu, R. Wang, L. Wang, Sorption thermal storage for solar energy, Progress in Energy and Combustion Science, 39 (2013) 489-514.
    [16] G. Tiwari, A. Tiwari, Shyam (2016) Handbook of solar energy: theory, analysis and applications, in, Springer, Singapore. https://doi. org/10.1007/978-981-10-0805-4.
    [17] N.S. Lewis, Introduction: solar energy conversion, in, ACS Publications, 2015.
    [18] H. Ghasemi, G. Ni, A.M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, G. Chen, Solar steam generation by heat localization, Nature communications, 5 (2014) 4449.
    [19] M. Iqbal, An introduction to solar radiation, Elsevier, 2012.
    [20] M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production, Energy & Environmental Science, 12 (2019) 841-864.
    [21] A. Steinfeld, Solar thermochemical production of hydrogen––a review, Solar energy, 78 (2005) 603-615.
    [22] V.-D. Dao, C.Q. Tran, S.-H. Ko, H.-S. Choi, Dry plasma reduction to synthesize supported platinum nanoparticles for flexible dye-sensitized solar cells, Journal of Materials Chemistry A, 1 (2013) 4436-4443.
    [23] V.-D. Dao, H.-S. Choi, Pt nanourchins as efficient and robust counter electrode materials for dye-sensitized solar cells, ACS applied materials interfaces, 8 (2016) 1004-1010.
    [24] Y. Choi, M. Baek, Z. Zhang, V.-D. Dao, H.-S. Choi, K. Yong, A two-storey structured photoanode of a 3D Cu 2 ZnSnS 4/CdS/ZnO@ steel composite nanostructure for efficient photoelectrochemical hydrogen generation, Nanoscale, 7 (2015) 15291-15299.
    [25] T.D.C. Nguyen, T.P.L.C. Nguyen, H.T.T. Mai, V.-D. Dao, M.P. Nguyen, Novel photocatalytic conversion of CO2 by vanadium-doped tantalum nitride for valuable solar fuel production, Journal of catalysis, 352 (2017) 67-74.
    [26] D. Bahnemann, Photocatalytic water treatment: solar energy applications, Solar energy 77 (2004) 445-459.
    [27] J. Koschikowski, M. Wieghaus, M. Rommel, Solar thermal driven desalination plants based on membrane distillation, Water Science and Technology: Water Supply, 3 (2003) 49-55.
    [28] Z. Deng, J. Zhou, L. Miao, C. Liu, Y. Peng, L. Sun, S. Tanemura, The emergence of solar thermal utilization: solar-driven steam generation, Journal of Materials Chemistry A, 5 (2017) 7691-7709.
    [29] M. Zhang, L. Miao, Y.P. Kang, S. Tanemura, C.A. Fisher, G. Xu, C.X. Li, G.Z. Fan, Efficient, low-cost solar thermoelectric cogenerators comprising evacuated tubular solar collectors and thermoelectric modules, Applied energy, 109 (2013) 51-59.
    [30] N.S. Lewis, Research opportunities to advance solar energy utilization, Science, 351 (2016) aad1920.
    [31] S. Zhu, A. Das, L. Bui, H. Zhou, D.P. Curran, M. Rueping, Oxygen switch in visible-light photoredox catalysis: radical additions and cyclizations and unexpected C–C-bond cleavage reactions, Journal of the American Chemical Society, 135 (2013) 1823-1829.
    [32] O. Neumann, C. Feronti, A.D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles, Proceedings of the National Academy of Sciences, 110 (2013) 11677-11681.
    [33] I. Darawsheh, M. Islam, F. Banat, Experimental characterization of a solar powered MSF desalination process performance, Thermal Science Engineering Progress, 10 (2019) 154-162.
    [34] S. Hoffmann, Planet Water, Wiley Online Library, 2009.
    [35] W.W.A. Programme, Water for People, Water for Life: The United Nations World Water Development Report: Executive Summary, Unesco Pub., 2003.
    [36] W. Xu, X. Hu, S. Zhuang, Y. Wang, X. Li, L. Zhou, S. Zhu, J. Zhu, Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination, Advanced Energy Materials, 8 (2018) 1702884.
    [37] M. Turek, K. Mitko, M. Chorążewska, P. Dydo, Use of the desalination brines in the saturation of membrane electrolysis feed, Desalination and Water Treatment, 51 (2013) 2749-2754.
    [38] V.G. Gude, Energy consumption and recovery in reverse osmosis, Desalination and water treatment, 36 (2011) 239-260.
    [39] H. Song, Y. Liu, Z. Liu, M.H. Singer, C. Li, A.R. Cheney, D. Ji, L. Zhou, N. Zhang, X. Zeng, Cold vapor generation beyond the input solar energy limit, Advanced Science, 5 (2018) 1800222.
    [40] S. He, C. Chen, Y. Kuang, R. Mi, Y. Liu, Y. Pei, W. Kong, W. Gan, H. Xie, E. Hitz, C. Jia, X. Chen, A. Gong, J. Liao, J. Li, Z.J. Ren, B. Yang, S. Das, L. Hu, Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination, Energy & Environmental Science, 12 (2019) 1558-1567.
    [41] J.-P. Mericq, S. Laborie, C. Cabassud, Vacuum membrane distillation of seawater reverse osmosis brines, Water Research, 44 (2010) 5260-5273.
    [42] M. Shatat, M. Worall, S. Riffat, Opportunities for solar water desalination worldwide, Sustainable cities and society, 9 (2013) 67-80.
    [43] Z.-h. Liu, R.-L. Hu, X.-j. Chen, A novel integrated solar desalination system with multi-stage evaporation/heat recovery processes, Renewable energy, 64 (2014) 26-33.
    [44] S.A. Kalogirou, Seawater desalination using renewable energy sources, Progress in energy and combustion science, 31 (2005) 242-281.
    [45] J. Peng, L. Lu, H. Yang, Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems, Renewable and sustainable energy reviews, 19 (2013) 255-274.
    [46] T. Bhattacharya, A.K. Chakraborty, K. Pal, Effects of ambient temperature and wind speed on performance of monocrystalline solar photovoltaic module in Tripura, India, Journal of Solar Energy 2014 (2014).
    [47] V. Tyagi, N.A. Rahim, N.A. Rahim, A. Jeyraj, L. Selvaraj, Progress in solar PV technology: Research and achievement, Renewable and sustainable energy reviews, 20 (2013) 443-461.
    [48] A. Subramani, M. Badruzzaman, J. Oppenheimer, J.G. Jacangelo, Energy minimization strategies and renewable energy utilization for desalination: a review, Water research, 45 (2011) 1907-1920.
    [49] Y. Shi, R. Li, Y. Jin, S. Zhuo, L. Shi, J. Chang, S. Hong, K.-C. Ng, P. Wang, A 3D Photothermal Structure toward Improved Energy Efficiency in Solar Steam Generation, Joule, 2 (2018) 1171-1186.
    [50] G. Xue, K. Liu, Q. Chen, P. Yang, J. Li, T. Ding, J. Duan, B. Qi, J. Zhou, Robust and low-cost flame-treated wood for high-performance solar steam generation, ACS applied materials & interfaces, 9 (2017) 15052-15057.
    [51] P.D. Dongare, A. Alabastri, S. Pedersen, K.R. Zodrow, N.J. Hogan, O. Neumann, J. Wu, T. Wang, A. Deshmukh, M. Elimelech, Nanophotonics-enabled solar membrane distillation for off-grid water purification, Proceedings of the National Academy of Sciences, 114 (2017) 6936-6941.
    [52] J. Grandidier, D.M. Callahan, J.N. Munday, H.A. Atwater, Light absorption enhancement in thin‐film solar cells using whispering gallery modes in dielectric nanospheres, Advanced materials, 23 (2011) 1272-1276.
    [53] B. Zhu, H. Kou, Z. Liu, Z. Wang, D.K. Macharia, M. Zhu, B. Wu, X. Liu, Z. Chen, Flexible and Washable CNT-Embedded PAN Nonwoven Fabrics for Solar-Enabled Evaporation and Desalination of Seawater, ACS Appl Mater Interfaces, 11 (2019) 35005-35014.
    [54] G. Li, W.-C. Law, K.C. Chan, Floating, highly efficient, and scalable graphene membranes for seawater desalination using solar energy, Green chemistry, 20 (2018) 3689-3695.
    [55] H. Kou, Z. Liu, B. Zhu, D.K. Macharia, S. Ahmed, B. Wu, M. Zhu, X. Liu, Z. Chen, Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight, Desalination, 462 (2019) 29-38.
    [56] Y. Shao, Z. Jiang, Y. Zhang, T. Wang, P. Zhao, Z. Zhang, J. Yuan, H. Wang, All-poly (ionic liquid) membrane-derived porous carbon membranes: scalable synthesis and application for photothermal conversion in seawater desalination, ACS nano, 12 (2018) 11704-11710.
    [57] Y. Fan, W. Bai, P. Mu, Y. Su, Z. Zhu, H. Sun, W. Liang, A. Li, Conductively monolithic polypyrrole 3-D porous architecture with micron-sized channels as superior salt-resistant solar steam generators, Solar Energy Materials and Solar Cells, 206 (2020).
    [58] S. Gao, X. Dong, J. Huang, J. Dong, F.D. Maggio, S. Wang, F. Guo, T. Zhu, Z. Chen, Y. Lai, Bioinspired Soot-Deposited Janus Fabrics for Sustainable Solar Steam Generation with Salt-Rejection, Glob Chall, 3 (2019) 1800117.
    [59] J.R. Werber, C.O. Osuji, M. Elimelech, Materials for next-generation desalination and water purification membranes, Nature Reviews Materials, 1 (2016) 1-15.
    [60] M. Suss, S. Porada, X. Sun, P. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it?, Energy & Environmental Science, 8 (2015) 2296-2319.
    [61] S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai, S.M. Mahurin, Water desalination using nanoporous single-layer graphene, Nature nanotechnology, 10 (2015) 459-464.
    [62] F. Wang, D. Wei, Y. Li, T. Chen, P. Mu, H. Sun, Z. Zhu, W. Liang, A. Li, Chitosan/reduced graphene oxide-modified spacer fabric as a salt-resistant solar absorber for efficient solar steam generation, Journal of Materials Chemistry A, 7 (2019) 18311-18317.
    [63] J. Huang, Y. He, M. Chen, X. Wang, Separating photo-thermal conversion and steam generation process for evaporation enhancement using a solar absorber, Applied Energy, 236 (2019) 244-252.
    [64] M. Keshavarz Hedayati, M. Elbahri, Antireflective coatings: Conventional stacking layers and ultrathin plasmonic metasurfaces, a mini-review, Materials, 9 (2016) 497.
    [65] J. Cai, L. Qi, Recent advances in antireflective surfaces based on nanostructure arrays, Materials Horizons, 2 (2015) 37-53.
    [66] H. Ren, M. Tang, B. Guan, K. Wang, J. Yang, F. Wang, M. Wang, J. Shan, Z. Chen, D. Wei, Hierarchical graphene foam for efficient omnidirectional solar–thermal energy conversion, Advanced materials, 29 (2017) 1702590.
    [67] P. Fan, H. Wu, M. Zhong, H. Zhang, B. Bai, G. Jin, Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion, Nanoscale, 8 (2016) 14617-14624.
    [68] M. Zhu, Y. Li, F. Chen, X. Zhu, J. Dai, Y. Li, Z. Yang, X. Yan, J. Song, Y. Wang, Plasmonic wood for high‐efficiency solar steam generation, Advanced Energy Materials, 8 (2018) 1701028.
    [69] L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination, Nature Photonics, 10 (2016) 393.
    [70] L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, J. Zhu, Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation, Science advances, 2 (2016) e1501227.
    [71] H. Chen, L. Shao, Q. Li, J. Wang, Gold nanorods and their plasmonic properties, Chemical Society Reviews, 42 (2013) 2679-2724.
    [72] A.D. Khawaji, I.K. Kutubkhanah, J.-M. Wie, Advances in seawater desalination technologies, Desalination, 221 (2008) 47-69.
    [73] G. Ni, G. Li, S.V. Boriskina, H. Li, W. Yang, T. Zhang, G. Chen, Steam generation under one sun enabled by a floating structure with thermal concentration, Nature Energy, 1 (2016) 1-7.
    [74] M. Ye, J. Jia, Z. Wu, C. Qian, R. Chen, P.G. O'Brien, W. Sun, Y. Dong, G.A. Ozin, Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation, Advanced Energy Materials, 7 (2017) 1601811.
    [75] L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Hydrophobic light‐to‐heat conversion membranes with self‐healing ability for interfacial solar heating, Advanced Materials, 27 (2015) 4889-4894.
    [76] Y. Jin, J. Chang, Y. Shi, L. Shi, S. Hong, P. Wang, A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation, Journal of Materials Chemistry A, 6 (2018) 7942-7949.
    [77] F. Tao, M. Green, A.V. Garcia, T. Xiao, A.T. Van Tran, Y. Zhang, Y. Yin, X. Chen, Recent progress of nanostructured interfacial solar vapor generators, Applied Materials Today, 17 (2019) 45-84.
    [78] P. Wang, Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight, Environmental Science: Nano, 5 (2018) 1078-1089.
    [79] Y. Shi, R. Li, Y. Jin, S. Zhuo, L. Shi, J. Chang, S. Hong, K.-C. Ng, P. Wang, A 3D photothermal structure toward improved energy efficiency in solar steam generation, Joule, 2 (2018) 1171-1186.
    [80] Q. Zhang, X. Xiao, G. Wang, X. Ming, X. Liu, H. Wang, H. Yang, W. Xu, X. Wang, Silk-based systems for highly efficient photothermal conversion under one sun: portability, flexibility, and durability, Journal of Materials Chemistry A, 6 (2018) 17212-17219.
    [81] Y. Bian, Q. Du, K. Tang, Y. Shen, L. Hao, D. Zhou, X. Wang, Z. Xu, H. Zhang, L. Zhao, Carbonized Bamboos as Excellent 3D Solar Vapor‐Generation Devices, Advanced Materials Technologies, 4 (2019) 1800593.
    [82] Z. Deng, P.F. Liu, J. Zhou, L. Miao, Y. Peng, H. Su, P. Wang, X. Wang, W. Cao, F. Jiang, A Novel Ink‐Stained Paper for Solar Heavy Metal Treatment and Desalination, Solar RRL, 2 (2018) 1800073.
    [83] S. Hong, Y. Shi, R. Li, C. Zhang, Y. Jin, P.J.A.a.m. Wang, interfaces, Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy, ACS applied materials & interfaces, 10 (2018) 28517-28524.
    [84] G. Wang, Y. Fu, A. Guo, T. Mei, J. Wang, J. Li, X. Wang, Reduced graphene oxide–polyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation, Chemistry of Materials, 29 (2017) 5629-5635.
    [85] C.C. White, D.L. Hunston, K.T. Tan, J.J. Filliben, A.L. Pintar, G. Schueneman, A Systematic Approach to the Study of Accelerated Weathering of Building Joint Sealants, Journal of ASTM International, 9 (2012) 1-17.
    [86] K. Jiang, D.A. Smith, A. Pinchuk, Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles, The Journal of Physical Chemistry C,, 117 (2013) 27073-27080.
    [87] D. Ghim, Q. Jiang, S. Cao, S. Singamaneni, Y.-S. Jun, Mechanically interlocked 1T/2H phases of MoS2 nanosheets for solar thermal water purification, Nano energy, 53 (2018) 949-957.
    [88] K.-K. Liu, Q. Jiang, S. Tadepalli, R. Raliya, P. Biswas, R.R. Naik, S. Singamaneni, interfaces, Wood–graphene oxide composite for highly efficient solar steam generation and desalination, ACS applied materials, 9 (2017) 7675-7681.
    [89] Y. Yang, R. Zhao, T. Zhang, K. Zhao, P. Xiao, Y. Ma, P.M. Ajayan, G. Shi, Y. Chen, Graphene-based standalone solar energy converter for water desalination and purification, ACS nano, 12 (2018) 829-835.
    [90] F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, G. Yu, Highly efficient solar vapour generation via hierarchically nanostructured gels, Nature nanotechnology, 13 (2018) 489-495.
    [91] P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine, Accounts of chemical research, 41 (2008) 1578-1586.
    [92] G. Liu, J. Xu, K. Wang, Solar water evaporation by black photothermal sheets, Nano Energy, 41 (2017) 269-284.
    [93] X. Liu, B. Hou, G. Wang, Z. Cui, X. Zhu, X. Wang, Black titania/graphene oxide nanocomposite films with excellent photothermal property for solar steam generation, Journal of Materials Research, 33 (2018) 674-684.
    [94] P. Zhang, Q. Liao, H. Yao, Y. Huang, H. Cheng, L. Qu, Direct solar steam generation system for clean water production, Energy Storage Materials, 18 (2019) 429-446.
    [95] M. Gao, C.K. Peh, H.T. Phan, L. Zhu, G.W. Ho, Solar Absorber Gel: Localized Macro‐Nano Heat Channeling for Efficient Plasmonic Au Nanoflowers Photothermic Vaporization and Triboelectric Generation, Advanced Energy Materials, 8 (2018) 1800711.
    [96] J. Fang, Q. Liu, W. Zhang, J. Gu, Y. Su, H. Su, C. Guo, D. Zhang, Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation, Journal of Materials Chemistry A, 5 (2017) 17817-17821.
    [97] Y. Lin, Z. Chen, L. Fang, M. Meng, Z. Liu, Y. Di, W. Cai, S. Huang, Z. Gan, Copper nanoparticles with near-unity, omnidirectional, and broadband optical absorption for highly efficient solar steam generation, Nanotechnology, 30 (2018) 015402.
    [98] L. Zhang, J. Xing, X. Wen, J. Chai, S. Wang, Q. Xiong, Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination, Nanoscale, 9 (2017) 12843-12849.
    [99] S. Link, M.A. El-Sayed, Optical properties and ultrafast dynamics of metallic nanocrystals, Annual review of physical chemistry, 54 (2003) 331-366.
    [100] X. Huang, W. Zhang, G. Guan, G. Song, R. Zou, J. Hu, Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics, Accounts of chemical research, 50 (2017) 2529-2538.
    [101] F. Tao, M. Green, A.T.V. Tran, Y. Zhang, Y. Yin, X. Chen, Plasmonic Cu9S5 nanonets for microwave absorption, ACS Applied Nano Materials, 2 (2019) 3836-3847.
    [102] R. Chen, Z. Wu, T. Zhang, T. Yu, M. Ye, Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating, RSC advances, 7 (2017) 19849-19855.
    [103] J. Yao, Z. Zheng, G. Yang, Alloying-assisted phonon engineering of layered BiInSe 3@ nickel foam for efficient solar-enabled water evaporation, Nanoscale, 9 (2017) 16396-16403.
    [104] J. Yao, Z. Zheng, G. Yang, Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation, Nanoscale, 10 (2018) 2876-2886.
    [105] L. Yi, S. Ci, S. Luo, P. Shao, Y. Hou, Z. Wen, Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination, Nano Energy, 41 (2017) 600-608.
    [106] H. Liu, X. Zhang, Z. Hong, Z. Pu, Q. Yao, J. Shi, G. Yang, B. Mi, B. Yang, X. Liu, A bioinspired capillary-driven pump for solar vapor generation, Nano Energy, 42 (2017) 115-121.
    [107] D. Ding, W. Huang, C. Song, M. Yan, C. Guo, S. Liu, Non-stoichiometric MoO 3− x quantum dots as a light-harvesting material for interfacial water evaporation, Chemical Communications, 53 (2017) 6744-6747.
    [108] Y. Wang, S. Li, P. Zhang, H. Bai, L. Feng, F. Lv, L. Liu, S. Wang, Photothermal‐Responsive Conjugated Polymer Nanoparticles for Remote Control of Gene Expression in Living Cells, Advanced Materials, 30 (2018) 1705418.
    [109] C. Xu, Q. Yang, F. Wang, X. Fang, Z. Zhang, Research progress on novel solar steam generation system based on black nanomaterials, The Canadian Journal of Chemical Engineering, 96 (2018) 2086-2099.
    [110] G. Ćirić‐Marjanović, Polyaniline nanostructures, Nanostructured conductive polymers, (2010) 19-98.
    [111] S. Huang, Q. He, S. Xu, L. Wang, Polyaniline-based photothermal paper sensor for sensitive and selective detection of 2, 4, 6-trinitrotoluene, Analytical chemistry, 87 (2015) 5451-5456.
    [112] X. Huang, Y.-H. Yu, O.L. de Llergo, S.M. Marquez, Z. Cheng, Facile polypyrrole thin film coating on polypropylene membrane for efficient solar-driven interfacial water evaporation, RSC advances, 7 (2017) 9495-9499.
    [113] X. Wu, G.Y. Chen, W. Zhang, X. Liu, H. Xu, A plant‐transpiration‐process‐inspired strategy for highly efficient solar evaporation, Advanced Sustainable Systems, 1 (2017) 1700046.
    [114] X. Yin, Y. Zhang, Q. Guo, X. Cai, J. Xiao, Z. Ding, J. Yang, Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination, ACS applied materials & interfaces, 10 (2018) 10998-11007.
    [115] Q. Chen, Z. Pei, Y. Xu, Z. Li, Y. Yang, Y. Wei, Y. Ji, A durable monolithic polymer foam for efficient solar steam generation, Chemical science, 9 (2018) 623-628.
    [116] Y. Zeng, J. Yao, B.A. Horri, K. Wang, Y. Wu, D. Li, H. Wang, Solar evaporation enhancement using floating light-absorbing magnetic particles, Energy & Environmental Science, 4 (2011) 4074-4078.
    [117] L. Zhu, T. Ding, M. Gao, C.K.N. Peh, G.W. Ho, Shape conformal and thermal insulative organic solar absorber sponge for photothermal water evaporation and thermoelectric power generation, Advanced Energy Materials, 9 (2019) 1900250.
    [118] B. Zhu, H. Kou, Z. Liu, Z. Wang, D.K. Macharia, M. Zhu, B. Wu, X. Liu, Z. Chen, Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater, ACS applied materials & interfaces, 11 (2019) 35005-35014.
    [119] Y. Wang, L. Zhang, P. Wang, Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation, ACS Sustainable Chemistry & Engineering, 4 (2016) 1223-1230.
    [120] D.-D. Qin, Y.-J. Zhu, F.-F. Chen, R.-L. Yang, Z.-C. Xiong, Self-floating aerogel composed of carbon nanotubes and ultralong hydroxyapatite nanowires for highly efficient solar energy-assisted water purification, Carbon, 150 (2019) 233-243.
    [121] T. Li, H. Liu, X. Zhao, G. Chen, J. Dai, G. Pastel, C. Jia, C. Chen, E. Hitz, D. Siddhartha, Scalable and highly efficient mesoporous wood‐based solar steam generation device: localized heat, rapid water transport, Advanced Functional Materials, 28 (2018) 1707134.
    [122] K. Kim, S. Yu, C. An, S.-W. Kim, J.-H. Jang, Mesoporous three-dimensional graphene networks for highly efficient solar desalination under 1 sun illumination, ACS applied materials & interfaces 10 (2018) 15602-15608.
    [123] X. Li, R. Lin, G. Ni, N. Xu, X. Hu, B. Zhu, G. Lv, J. Li, S. Zhu, J. Zhu, Three-dimensional artificial transpiration for efficient solar waste-water treatment, National Science Review, 5 (2018) 70-77.
    [124] X. Gao, H. Lan, S. Li, X. Lu, M. Zeng, X. Gao, Q. Wang, G. Zhou, J.M. Liu, M.J. Naughton, Artificial Mushroom Sponge Structure for Highly Efficient and Inexpensive Cold‐Water Steam Generation, Global Challenges, 2 (2018) 1800035.
    [125] J. Wang, Z. Liu, X. Dong, C.-E. Hsiung, Y. Zhu, L. Liu, Y. Han, Microporous cokes formed in zeolite catalysts enable efficient solar evaporation, Journal of Materials Chemistry A, 5 (2017) 6860-6865.
    [126] L. Sun, J. Liu, Y. Zhao, J. Xu, Y. Li, Highly efficient solar steam generation via mass-produced carbon nanosheet frameworks, Carbon, 145 (2019) 352-358.
    [127] M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 381 (1996) 678-680.
    [128] G. Dresselhaus, S. Riichiro, Physical properties of carbon nanotubes, World scientific, 1998.
    [129] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.
    [130] A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, S.W. Joo, Carbon nanotubes: properties, synthesis, purification, and medical applications, Nanoscale research letters, 9 (2014) 393.
    [131] M. Dresselhaus, Y. Lin, O. Rabin, A. Jorio, A. Souza Filho, M. Pimenta, R. Saito, G. Samsonidze, G. Dresselhaus, Nanowires and nanotubes, Materials Science Engineering, 23 (2003) 129-140.
    [132] A.H. Himel, S.A. Sultana, Fundamental Study and Application of Carbon Nanotube in FET, in, East West University, 2016.
    [133] P. Ajayan, T. Ebbesen, Nanometre-size tubes of carbon, Reports on Progress in Physics 60 (1997) 1025.
    [134] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, 363 (1993) 603-605.
    [135] D. Tuncel, Non-covalent interactions between carbon nanotubes and conjugated polymers, Nanoscale, 3 (2011) 3545-3554.
    [136] D. Qian, a. Wagner, Gregory J, W.K. Liu, M.-F. Yu, R.S. Ruoff, Mechanics of carbon nanotubes, Appl. Mech. Rev., 55 (2002) 495-533.
    [137] J.N. Coleman, U. Khan, Y.K. Gun'ko, Mechanical reinforcement of polymers using carbon nanotubes, Advanced materials, 18 (2006) 689-706.
    [138] E.T. Thostenson, T.-W. Chou, Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites, Carbon, 44 (2006) 3022-3029.
    [139] T. Villmow, P. Pötschke, S. Pegel, L. Häussler, B. Kretzschmar, Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly (lactic acid) matrix, Polymer, 49 (2008) 3500-3509.
    [140] P.-C. Ma, J.-K. Kim, Carbon nanotubes for polymer reinforcement, CRC Press, 2011.
    [141] K. Mukhopadhyay, C.D. Dwivedi, G.N. Mathur, Conversion of carbon nanotubes to carbon nanofibers by sonication, Carbon, 40 (2002) 1373-1376.
    [142] W.U.J.W. Supply, S.M. Programme, W.H. Organization, W.U.J.M.P.f.W. Supply, Sanitation, UNICEF., Water for life: making it happen, World health organization, 2005.
    [143] J. Rozema, T. Flowers, Crops for a salinized world, Science, 322 (2008) 1478-1480.
    [144] K.B. Gregory, R.D. Vidic, D.A. Dzombak, Water management challenges associated with the production of shale gas by hydraulic fracturing, Elements, 7 (2011) 181-186.
    [145] C. Chen, Y. Kuang, L. Hu, Challenges and opportunities for solar evaporation, Joule, (2019).
    [146] Y.-S. Jun, X. Wu, D. Ghim, Q. Jiang, S. Cao, S. Singamaneni, Photothermal membrane water treatment for two worlds, Accounts of chemical research, 52 (2019) 1215-1225.
    [147] Y. Fan, W. Bai, P. Mu, Y. Su, Z. Zhu, H. Sun, W. Liang, A. Li, Conductively monolithic polypyrrole 3-D porous architecture with micron-sized channels as superior salt-resistant solar steam generators, Solar Energy Materials Solar Cells, 206 (2020) 110347.
    [148] Q. Gan, T. Zhang, R. Chen, X. Wang, M. Ye, Simple, low-dose, durable, and carbon-nanotube-based floating solar still for efficient desalination and purification, ACS Sustainable Chemistry Engineering, 7 (2019) 3925-3932.
    [149] Y. Liu, J. Chen, D. Guo, M. Cao, L. Jiang, interfaces, Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air–water interface, ACS applied materials, 7 (2015) 13645-13652.
    [150] Y.-N. Jin, H.-C. Yang, H. Huang, Z.-K. Xu, Underwater superoleophobic coatings fabricated from tannic acid-decorated carbon nanotubes, RSC Advances, 5 (2015) 16112-16115.
    [151] Q. Gan, T. Zhang, R. Chen, X. Wang, M. Ye, Simple, low-dose, durable, and carbon-nanotube-based floating solar still for efficient desalination and purification, ACS Sustainable Chemistry & Engineering, 7 (2019) 3925-3932.
    [152] Y. Zeng, K. Wang, J. Yao, H. Wang, Hollow carbon beads for significant water evaporation enhancement, Chemical Engineering Science, 116 (2014) 704-709.
    [153] Z. Yin, H. Wang, M. Jian, Y. Li, K. Xia, M. Zhang, C. Wang, Q. Wang, M. Ma, Q.S. Zheng, Y. Zhang, Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation, ACS Appl Mater Interfaces, 9 (2017) 28596-28603.
    [154] P. Zhang, J. Li, L. Lv, Y. Zhao, L. Qu, Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water, Acs Nano, 11 (2017) 5087-5093.
    [155] M. Zhu, J. Yu, C. Ma, C. Zhang, D. Wu, H. Zhu, Carbonized daikon for high efficient solar steam generation, Solar Energy Materials and Solar Cells, 191 (2019) 83-90.
    [156] G. Ni, G. Li, Svetlana V. Boriskina, H. Li, W. Yang, T. Zhang, G. Chen, Steam generation under one sun enabled by a floating structure with thermal concentration, Nature Energy, 1 (2016).
    [157] H.M. Wilson, S.R. AR, A.E. Parab, N. Jha, Ultra-low cost cotton based solar evaporation device for seawater desalination and waste water purification to produce drinkable water, Desalination, 456 (2019) 85-96.
    [158] S. He, C. Chen, Y. Kuang, R. Mi, Y. Liu, Y. Pei, W. Kong, W. Gan, H. Xie, E. Hitz, Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination, Energy & Environmental Science, 12 (2019) 1558-1567.
    [159] G. Chen, N. Zhang, N. Li, L. Yu, X. Xu, A 3D Hemispheric Steam Generator Based on An Organic–Inorganic Composite Light Absorber for Efficient Solar Evaporation and Desalination, Advanced Materials Interfaces, 7 (2020) 1901715.
    [160] Q. Hou, C. Xue, N. Li, H. Wang, Q. Chang, H. Liu, J. Yang, S. Hu, Self-assembly carbon dots for powerful solar water evaporation, Carbon, 149 (2019) 556-563.
    [161] F. Liu, L. Wang, R. Bradley, B. Zhao, W. Wu, Highly efficient solar seawater desalination with environmentally friendly hierarchical porous carbons derived from halogen-containing polymers, RSC Advances, 9 (2019) 29414-29423.
    [162] X. Li, W. Xu, M. Tang, L. Zhou, B. Zhu, S. Zhu, J. Zhu, Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path, Proceedings of the National Academy of Sciences, 113 (2016) 13953-13958.
    [163] V. Goncharuk, The new standard for drinking water, Journal of Chemistry, 2013 (2013).
    [164] V. Prajzler, W. Jung, K. Oh, J. Cajzl, P. Nekvindova, Optical properties of deoxyribonucleic acid thin layers deposited on an elastomer substrate, Optical Materials Express, 10 (2020) 421-433.
    [165] J. Lou, Y. Liu, Z. Wang, D. Zhao, C. Song, J. Wu, N. Dasgupta, W. Zhang, D. Zhang, P. Tao, interfaces, Bioinspired multifunctional paper-based rGO composites for solar-driven clean water generation, ACS applied materials, 8 (2016) 14628-14636.
    [166] P. Wilhelm, D. Stephan, Photodegradation of rhodamine B in aqueous solution via SiO2@ TiO2 nano-spheres, Journal of Photochemistry and Photobiology A: Chemistry, 185 (2007) 19-25.
    [167] Y. Xu, D. Liu, H. Xiang, S. Ren, Z. Zhu, D. Liu, H. Xu, F. Cui, W. Wang, Easily scaled-up photo-thermal membrane with structure-dependent auto-cleaning feature for high-efficient solar desalination, Journal of Membrane Science, 586 (2019) 222-230.

    QR CODE