簡易檢索 / 詳目顯示

研究生: 江若誠
JO-CHENG CHIANG
論文名稱: 氣渦流熔融電紡聚乳酸/聚丙烯包芯紗性質之研究
Preparation and Properties of Melting Electrospun Polylactide/ Polypropylene Core Spun Yarns by Air Vortex Spinning Method
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 李俊毅
Jiunn-Yih Lee
邱士軒
Shih-Hsuan Chiu
鄭國彬
Kou-Bin Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 111
中文關鍵詞: 熔融靜電紡絲包芯紗氣渦流紡紗熱延伸聚乳酸
外文關鍵詞: melt electrospun, core spun yarn, air vortex spinningsyarn, hot drawing, polylactide
相關次數: 點閱:320下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究使用熔融電紡技術與氣渦流加撚系統結合,並進行紗線熱延伸、熱定型、以及聚丙烯包芯紗的紗線性質研究,以及開發多針熔融電紡系統改變針頭間距以及改變接收屏系統觀察電紡纖維沉積型態,最後再將多針熔融電紡及氣渦流加撚系統紡製出多針電紡奈米紗線。
    本實驗分為三部份,第一部分將單針紗線改變捲取速度以及氣渦流空氣流量得到最佳的捲取速度120cm/min及空氣流量100L/min,電紡奈米紗線斷裂強度達到1.15 cN/tex,之後將紗線用熱延伸延伸溫度80℃與延伸倍率2倍再將紗線熱定型,使紗線斷裂強度達到2.74 cN/tex。
    第二部分將聚丙烯35D紗線與聚乳酸電紡纖維結合,發現捲取速度80cm/min及氣渦流100L/min可製作出最佳的包芯紗,之後將包芯紗線用熱延伸溫度70℃與延伸倍率1.2倍,包芯紗的斷裂強度因此達到2.75 cN/tex。
    第三部分開發多針熔融電紡技術,探討其電紡參數得到最佳參數為模頭溫度260℃、電壓50kV、工作距離8公分、供給量0.02g/min得到8μm的纖維直徑,再改變針頭孔洞尺寸0.3毫米得到纖維直徑5μm及改變紡絲空間溫度70℃得到纖維直徑為4μm,以及探討其針頭距離改變由11毫米至44毫米及改變接收屏系統觀察其電紡纖維沉積型態,發現固定式接收屏電紡纖維在11毫米針頭間距會重疊,滾筒為長直條狀電紡纖維間的距離為針頭間的距離,最後在將多針熔融電紡技術與氣渦流加撚系統結合,紡製出多針電紡奈米紗線最佳的捲取速度為140cm/min,紗線斷裂強度提升至1.5 cN/tex。
    由多針熔融電紡技術沉積結果得知,若是能夠將針頭距離縮短,可以達到縮小工業化機台尺寸,與工業化量產前景達到更廣泛應用。


    This research combined the techniques of melting electronspun and air vortex spinning to form the polylactide (PLA) yarn, through hot drawing, heat setting of PLA and PP core spun yarn. Not only single nozzle, in order to study mass production, multi nozzle melting electronspspun of air vortex PLA yarn was also developed.
    This research contains three parts. First part, the single nozzle system we discussed. We derived the best PLA electronspspun fiber with the take up speed 120 cm/min and air flow 100 L/min. The results also shows that under 90℃ for heat setting and stretch ratio 2 and 80℃ for the hot drawing with best breaking strength as 2.74 cN/tex. Second part, PLA/PP core spun yarn with best performance under the take up speed 80 cm/min and air flow 100 L/min. The results also shows that without heat setting and stretch ratio 1.2 and 70℃ for the hot drawing with best breaking strength as 2.75 cN/tex. The surface morphology after and before hot drawing and heat setting behaviors were also researched. The last part, we discuss the multi nozzle system. We found the best parameter for the breaking strength, 1.5 cN/tex, as take up speed 140 cm/min. From the deposition morphology, we can realize the shorter working distance have better yarn structure which may meet the minimizing of machine size for the real industrial application.

    摘要 I Abstract II 圖目錄 V 表目錄 X 第一章、 前言 1 1.1引言 1 1.2加工處理紗線種類 2 1.3研究動機與目的 4 第二章、 文獻回顧 6 2.1不連續順向排列奈米纖維 6 2.2不連續奈米紗線 10 2.3連續的順向排列奈米纖維 15 2.4單針式連續的奈米電紡奈米紗線 19 2.5多針式連續的奈米電紡奈米紗線 24 第三章、 實驗 30 3.1實驗材料 30 3.2實驗設備及測試儀器 30 3.3實驗流程 31 3.3.1單針熔融電紡奈米紗線實驗 31 3.3.2多針熔融電紡實驗 32 3.4熔融靜電紡絲 33 3.5氣渦流加撚系統 34 3.8熔融電紡奈米紗線熱延伸 36 3.9撚回角度 36 3.10熔融電紡奈米紗線橫截面觀察 37 3.11熔融電紡奈米紗線拉伸試驗 37 第四章、 結果與討論 38 4.1氣渦流熔融電紡奈米紗線(ES yarn) 38 4.1.1 單針熔融電紡奈米紗線捲取速度改變 39 4.1.2 單針熔融電紡奈米紗線氣渦流空氣流量改變 43 4.2單針熔融電紡奈米紗線熱延伸性質探討 46 4.2.1紗線熱延伸溫度改變之比較 47 4.2.2紗線熱延伸倍率之比較 50 4.2.3 紗線熱延伸後熱定型之比較 54 4.3單針熔融電紡聚丙烯包芯紗(PP core spun yarn) 57 4.3.1熔融電紡聚丙烯包芯紗與熔融電紡奈米紗線拉伸比較 60 4.3.2熔融電紡聚丙烯包芯紗熱延伸溫度拉伸比較 63 4.3.3熔融電紡聚丙烯包芯紗熱延伸倍率改變比較 67 4.3.4熔融電紡聚丙烯包芯紗熱定型比較 70 4.4多針熔融靜電紡絲 73 4.4.1電紡參數改變對纖維直徑影響 74 4.4.2電紡針頭距離改變對電紡纖維沉積型態觀察 82 4.4.3多針熔融電紡奈米紗線 85 第五章、 結論 92 參考文獻 94 附件 98

    [1]A. Sonseca,L. Peponi,O. Sahuquillo,J. M. Kenny,E. Giménez,Electrospinning of biodegradable polylactide/hydroxyapatite nanofibers: study on the morphology, crystallinity structure and thermal stability. Polymer degradation and stability.2012,97(10),2052-2059.
    [2]Z. K. Nagy,I. Wagner,K. Molnár,G. Marosi,Express polym lett. 2010,4,763-772.
    [3] Saville D.V.,Physics of fluids.1971,14,1095-1099.
    [4]R. Seeram,K. Fujihara,W. E. Teo,T. C. Lim,M. Zuwei,An introduction to electrospinning and nanofibers.World scientific,2005.
    [5]N. Tomczak,S. Gu,M. Han,V. Hulst,V. Julius,European polymer journal.2006,42,2205-2210.
    [6]K. Sun Z. Li,Express polymer letters.2011,5,763-772.
    [7]C. Feng,K. Khulbe,T. Matsuura,Journal of applied polymer science. 2010,115,756-776.
    [8]Z. M. Huang,Y.Z. Zhang,M. Kotaki,S. Ramakrishna.Composites science and technology.2003,63,2223-2253.
    [9]A. Varesano,F. Rombaldoni,G. Mazzuchetti,C. Tonin,R. Comotto,Polymer International.2010,59,1606-1615.
    [10]A. Varesano,R. A. Carltto,G. Mazzuchetti,Journal of materials processing technology.2009, 209,5178-5185.
    [11]F. L. Zhou,R. H. Gong,I. Porat,Journal of materials science. 2009,44,5501-5508.
    [12]G. Kim,Y. S. Cho,W. D. Kim.European polymer journal.2006,42, 2031-2038.
    [13]S. S. Ozer,D. Ward,H. Gevgilili,D.M. Kalyon,Polymer engineering & science.2013,53,1463-1474.
    [14]S. Theron,A. Yarin,E. Zussman,E. Kroll,Mulitple jets in electrospinning: experiment and modeling.Polymer. 2005,46,2889-2899.
    [15]L. D. Tijing,W. Choi,Z. Jiang ,A. Amarjargal ,C. H. Park,H. R. Pant , Two-nozzle electrospinning of (MWNT/PU)/PU nanofibrous composite mat with improved mechanical and thermal properties.Current Applied Physics.2013,13(7),1247-1255.
    [16]C. Zhang,Y. Li,W. Wang,N. Zhan,N. Xiao,S. Wang,A novel two-nozzle electrospinning process for preparing microfiber reinforced pH-sensitive nano-membrane with enhanced mechanical property. European polymer journal.2011,47(12),2228-2233.
    [17]李金峰,氣渦式熔融靜電紡紗技術及其紗線性質之研究,逢甲大學,2015。
    [18] http://www.tmirc.fcu.edu.tw/Home/Knowledge
    [19] http://php.weaving.org.tw/weaving/fashionstatistic/datafile/950519-
    01.htm
    [20] http://baike.baidu.com/view/702604.htm
    [21] http://graybubble.pixnet.net/blog/post/17077806-weave-%E5%90%
    8D%E8%A9%9E-%E5%9F%BA%E6%9C%AC%E6%95%B4%E7%90%86%E5%B7%A5%E8%97%9D
    [22]J. D. Deitzel,J. D. Kleinmeyer,J. K. Hirvonen,N. C. Beck,Controlled deposition of electrospun poly(ethyleneoxide) fibers.Polymer. 2001,42(19),8163-8170.
    [23]C. K. Liu,R. J. Sun,K. Lai,C. Q. Sun,Y. W. Wang,Preparation of short submicron-fiber yarn by an annular collector through electrospinning. Materials letters. 2008,62(29),4467-4469.
    [24]W. E. Teo,S. Ramakrishna,Electrospun fibre bundle made of aligned nanofibres over two fixed points. Nanotechnology.2005,16(9),1878.
    [25]P. D. Dalton,D. Klee,M. Möller,Electrospinning with dual collection rings. Polymer.2005,46(3),611-614.
    [26]L. Q. Liu,M. Eder,I. Burgert,D. Tasis,M. Prato,H. D. Wagner, One-step electrospun nanofiber-based composite ropes.Applied physics letters.2007,90(8),083108.
    [27]B. K. Gu,M. K. Shin,K. W. Sohn,S. I. Kim,S. J. Kim,S. K. Kim, Direct fabrication of twisted nanofibers by electrospinning.Applied physics letters.2007,90(26),263902.
    [28]G. Chang,J. Shen,Fabrication of Microropes via bi-electrospinning with a rotating needle collector.Macromolecular rapid communications. 2010,31(24),2151-2154.
    [29]M. S. Khil,S. R. Bhattarai,H. Y. Kim,S. Z. Kim,K. H. Lee,Novel fabricated matrix via electrospinning for tissue engineering.Journal of biomedical materials research part b: applied biomaterials. 2005,72B(1),117-124.
    [30]H. Pan,L. Li,L. Hu,X. Cui,Continuous aligned polymer fibers produced by a modified electrospinning method.Polymer. 2006,47(14),4901-4904.
    [31] A. Theron, E. Zussman,A. L.Yarin,Electrostatic field-assisted alignment of electrospun nanofibres.Nanotechnology. 2001,12,384-390.
    [32] 柯尚亨,熔融靜電紡絲行為及性能之研究,逢甲大學,2012。
    [33]W. E. Teo,R. Gopal,R. Ramaseshan,K. Fujihara,S. Ramakrishna,A dynamic liquid support system for continuous electrospun yarn fabrication.Polymer. 2007,48(12),3400-3405.
    [34]M. B. Bazbouz,G. K. Stylios,Novel mechanism for spinning continuous twisted composite nanofiber yarns.European polymer journal. 2008,44(1),1-12.
    [35]F. Dabirian,Y. Hosseini,S. Ravandi,Manipulation of the electric field of electrospinning system to produce polyacrylonitrile nanofiber yarn. The journal of the textile institute.2007,98(3),237-241.
    [36]A. M. Afifi,S. Nakano,H. Yamane,Y. Kimura,Electrospinning of continuous aligning yarns with a ‘funnel’ target.Macromolecular materials and engineering.2010,295(7),660-665.
    [37]U. Ali,Y. Zhou,X. Wang,T. Lin,Direct electrospinning of highly twisted, continuous nanofiber yarns.The journal of the textile institute. 2012,103(1),80-88.
    [38]J. X. He,Y. M. Zhou,Y. C. Wu,R. T. Liu,Nanofiber coated hybrid yarn fabricated by novel electrospinning-airflow twisting method.Surface and coatings technology.2014,258,398-404.
    [39] Y. Zhou,J. He,H. Wang,K. Qi,B. Ding,S. Cui,Carbon nanofiber yarns fabricated from co-electrospun nanofibers.Materials & Design. 2016,95,591-598.
    [40]S. J. Najafi,A. A. Gharehaghaji,S. M. Etrati.Fabrication and characterization of elastic hollow nanofibrous PU yarn.Materials & Design. 2016,99,328-334.

    無法下載圖示 全文公開日期 2021/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE