簡易檢索 / 詳目顯示

研究生: 劉怡忻
Yi-Hsin Liu
論文名稱: 以氬氧混合氣體感應耦合電漿低溫輔助氧化4H碳化矽的製程探討
Low temperature oxidation of 4H-SiC using Ar/O2 inductively coupled plasma
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 陳良益
Liang-Yih Chen
胡振國
Jenn-Gwo Hwu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 88
中文關鍵詞: 碳化矽感應耦合電漿氧化製程閘極氧化層
外文關鍵詞: inductively coupled plasma, interface state density
相關次數: 點閱:155下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 II Abstract III 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1 碳化矽(silicon carbide, SiC) 4 2.1.1 碳化矽結構 4 2.1.2 碳化矽特性 6 2.2 金氧半電容器(Metal-Oxide-Semiconductor Capacitor, MOS Capacitor) 8 2.2.1 理想狀態之金氧半電容器 8 2.2.2 金氧半電容器之電容量測 10 2.3 SiO2/SiC界面缺陷 12 2.3.1 形成SiO2/SiC界面缺陷的因素 12 2.3.2 SiO2/SiC界面缺陷密度的評估 14 2.4 碳化矽的氧化製程 16 2.4.1 熱氧化 (thermal oxidation)製程 16 2.4.2 陽極氧化(anodization)製程 18 2.4.3 電漿輔助氧化(plasma enhancement oxidation)製程 19 第三章 實驗方法與設備 21 3.1 實驗材料 21 3.2 實驗設備 23 3.2.1 高溫爐 23 3.2.2 感應耦合電漿輔助氧化系統 25 3.2.3 共濺鍍系統 28 3.3 分析儀器 30 3.3.1 橢圓偏光儀(Spectroscopic ellipsometry, SE) 30 3.3.2 X射線光電子能譜儀(X-Ray photoelectron spectroscope, XPS) 31 3.3.3 掃描式電子顯微鏡(Scanning electron microscope, SEM) 32 3.3.4 電性量測系統 33 3.4 實驗步驟 35 3.4.1 RCA清潔法 36 3.4.2 熱氧化製程 37 3.4.3 ICP輔助氧化製程 37 3.4.4 金屬閘極與背電極 38 第四章 結果與討論 39 4.1 高溫熱氧化4H-SiC晶片的製程 39 4.1.1 熱氧化溫度對4H-SiC的氧化速率與晶片表面形貌之效應 39 4.1.2 熱氧化處理後的SiO2/4H-SiC界面處元素分布分析 43 4.2 ICP輔助氧化4H-SiC晶片的製程 47 4.2.1 基材溫度對4H-SiC氧化速率之效應 47 4.2.2 ICP輔助氧化電漿功率對4H-SiC的氧化速率與表面形貌之效應 52 4.2.3 ICP輔助氧化處理後的SiO2/4H-SiC界面處元素分布 55 4.3 金屬(鎳)/半導體(碳化矽)的接觸特性 60 4.3.1 濺鍍鎳金屬薄膜於4H-SiC晶片 60 4.3.2 金屬後退火對金半接觸特性之影響 63 4.3.3 金屬(鎳)/半導體(碳化矽)的接觸電阻 67 第五章 結論 71 第六章 參考文獻 72

1. H. Lin and A. Villamor, (Yole Development Paris, 2017).
2. M. Nitzsche, C. Cheshire, M. Fischer, J. Ruthardt and J. Roth-Stielow, presented at the PCIM Europe 2019; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2019 (unpublished).
3. H. Sheng, Z. Chen, F. Wang and A. Millner, presented at the 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2010 (unpublished).
4. H. Matsunami and T. Kimoto, Materials Science and Engineering: R: Reports 20 (3), 125-166 (1997).
5. S. T. Pantelides, S. Wang, A. Franceschetti, R. Buczko, M. Di Ventra, S. N. Rashkeev, L. Tsetseris, M. Evans, I. Batyrev and L. C. Feldman, presented at the Materials science forum, 2006 (unpublished).
6. T. Hosoi, K. Konzono, Y. Uenishi, S. Mitani, Y. Nakano, T. Nakamura, T. Shimura and H. Watanabe, presented at the Materials Science Forum, 2011 (unpublished).
7. D.-K. Kim, K.-S. Jeong, Y.-S. Kang, H.-K. Kang, S. W. Cho, S.-O. Kim, D. Suh, S. Kim and M.-H. Cho, Scientific reports 6 (1), 1-11 (2016).
8. W. D. Callister, Fundamentals of materials science and engineering. (Wiley London, 2000).
9. T. Kimoto and J. A. Cooper, Fundamentals of silicon carbide technology: growth, characterization, devices and applications. (John Wiley & Sons, 2014).
10. H. Matsunami, Japanese Journal of Applied Physics 43 (10R), 6835 (2004).
11. T. Kimoto, Japanese Journal of Applied Physics 54 (4), 040103 (2015).
12. A. Sadao, (John Wiley & Sons Ltd, England, 2005).
13. Z. Ni, X. Lyu, O. P. Yadav and D. Cao, presented at the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017 (unpublished).
14. W. Choyke, in Silicon Carbide–1968 (Elsevier, 1969), pp. S141-S152.
15. O. Wutikuer, (2018).
16. A. Salinaro, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2016.
17. J. L. Hudgins, G. S. Simin, E. Santi and M. A. Khan, IEEE Transactions on power electronics 18 (3), 907-914 (2003).
18. P. Fiorenza, F. Giannazzo and F. Roccaforte, Energies 12 (12), 2310 (2019).
19. D. K. Schroder, Physics Today. doi 10 (1.2810086) (2006).
20. H. Kurimoto, K. Shibata, C. Kimura, H. Aoki and T. Sugino, Applied Surface Science 253 (5), 2416-2420 (2006).
21. V. Afanas' ev, Phys. Status Solidi A 162, 321 (1997).
22. H. Deng, K. Endo and K. Yamamura, Applied Physics Letters 104 (10), 101608 (2014).
23. J. Rappich, Microelectronics Reliability 40 (4-5), 815-819 (2000).
24. H. Kahn, C. Deeb, I. Chasiotis and A. H. Heuer, Journal of microelectromechanical systems 14 (5), 914-923 (2005).
25. F. Gaspard, A. Halimaoui and G. Sarrabayrouse, Revue de physique appliquée 22 (1), 65-69 (1987).
26. B. J. Kailath, A. DasGupta and N. DasGupta, Solid-state electronics 51 (5), 762-770 (2007).
27. K.-C. Chuang and J.-G. Hwu, Journal of the Electrochemical Society 155 (8), G159 (2008).
28. P. Chang and J. Hwu, Journal of Applied Physics 124 (2), 024503 (2018).
29. W. Woon, S. Hutagalung and K. Cheong, Thin Solid Films 517 (8), 2808-2812 (2009).
30. C. C. Welch, D. L. Olynick, Z. Liu, A. Holmberg, C. Peroz, A. P. Robinson, M. D. Henry, A. Scherer, T. Mollenhauer and V. Genova, presented at the International Conference Micro-and Nano-Electronics 2012, 2013 (unpublished).
31. P. Joshi, Y. Ono, A. Voutsas and J. Hartzell, Electrochemical and solid-state letters 7 (4), G62 (2004).
32. C. B. Labelle, R. Opila and A. Kornblit, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 23 (1), 190-196 (2005).
33. H. Hirai and K. Kita, Applied Physics Letters 103 (13), 132106 (2013).
34. R. H. Kikuchi and K. Kita, Applied Physics Letters 105 (3), 032106 (2014).
35. T. Zheleva, A. Lelis, G. Duscher, F. Liu, I. Levin and M. Das, Applied Physics Letters 93 (2), 022108 (2008).
36. C. Stinespring and J. Wormhoudt, Journal of applied physics 65 (4), 1733-1742 (1989).
37. J. Szajman, J. Liesegang, J. Jenkin and R. Leckey, Journal of Electron Spectroscopy and Related Phenomena 23 (1), 97-102 (1981).
38. S. Tanuma, C. J. Powell and D. R. Penn, Surface and Interface Analysis 11 (11), 577-589 (1988).
39. S. Chen, Y. Zeng, X. Xiong, H. Lun, Z. Ye, T. Jiang, L. Yang, J. Zhang, L. Liu and G. Wang, Journal of the European Ceramic Society 41 (11), 5445-5456 (2021).
40. Y. Hijikata, S. Yagi, H. Yaguchi and S. Yoshida, Physics and Technology of Silicon Carbide Devices, 181-206 (2012).
41. B. Geetha Priyadarshini, S. Aich and M. Chakraborty, Journal of materials science 46 (9), 2860-2873 (2011).
42. T. Fujimura and S.-I. Tanaka, Journal of materials science 34 (2), 235-239 (1999).
43. W. Lu, W. Mitchel, G. Landis, T. Crenshaw and W. E. Collins, Solid-State Electronics 47 (11), 2001-2010 (2003).
44. H. Nesbitt, D. Legrand and G. Bancroft, Physics and Chemistry of Minerals 27 (5), 357-366 (2000).
45. A. Kuchuk, P. Borowicz, M. Wzorek, M. Borysiewicz, R. Ratajczak, K. Golaszewska, E. Kaminska, V. Kladko and A. Piotrowska, Advances in Condensed Matter Physics 2016 (2016).
46. O. Kazakova, V. Panchal and T. L. Burnett, Crystals 3 (1), 191-233 (2013).
47. S. Liu, Z. He, L. Zheng, B. Liu, F. Zhang, L. Dong, L. Tian, Z. Shen, J. Wang and Y. Huang, Applied Physics Letters 105 (12), 122106 (2014).
48. R. Perez, N. Mestres, D. Tournier, P. Godignon and J. Millan, Diamond and related materials 14 (3-7), 1146-1149 (2005).

無法下載圖示 全文公開日期 2025/08/29 (校內網路)
全文公開日期 2027/08/29 (校外網路)
全文公開日期 2027/08/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE