簡易檢索 / 詳目顯示

研究生: 李侑運
YU-YUN LEE
論文名稱: 結合情境學習與鷹架引導的擴增實境博物館卡片解謎實境遊戲之設計與評估
The Development and Evaluation of an Augmented Reality-based Alternate Game Integrating Contextual Clues and Cards as Cognitive Scaffolding for Museum Leaning
指導教授: 侯惠澤
Huei-Tse Hou
口試委員: 湯梓辰
Tzu-Chen Tang
陳聖智
Sheng-Chih Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 98
中文關鍵詞: 擴增實境另類實境遊戲地方感情境式學習博物館學習
外文關鍵詞: Augmented reality, Alternate reality game, Sence of place, Situated case, Museum learning
相關次數: 點閱:786下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

過往博物館的導覽方式,除了需要導覽人力外,展物與參觀者之間的互動性較低,往往較難吸引參觀者的注意力以及動機。為此,透過遊戲式學習的方式,以遊戲機制促發參觀者與展物互動的機會,並且利用擴增實境吸引參觀者的注意力,透過遊戲的趣味性及新奇性搭配科技的使用提升他們的學習動機,可望提升他們對於歷史文化與知識的學習成效。此外,透過將博物館展物的知識情境脈絡化,並將其以劇情故事的呈現方式設定為遊戲背景,也能夠讓參觀者將自身角色帶入遊戲中。
本研究開發一款結合擴增實境技術的實境解謎遊戲「糖史情謎」,此遊戲的內容以萬華糖廍文化園區展館內的各種歷史知識設計,結合了二十世紀初的情境背景、擴增實境的即時檢核機制、玩家的協作學習及密室逃脫遊戲中的解謎要素作為遊戲式學習的架構,來幫助參觀者們學習糖廠文化與歷史。研究中以台灣北部99位成年學習者作為施測對象,藉由實徵分析來探討參觀者們的學習成效、心流狀態、科技接受度、地方感、學習動機及不同呈現形式的感受。研究結果顯示,體驗完本系統開發之遊戲後,學習成效有顯著進步,並且認為該博物館因為結合本遊戲有價值。此外,心流狀態、科技接受度及學習動機各維度皆高於中位數。此外,本研究也對於未來研究與博物館應用給予建議,供研究者們參考。


Traditional museum tours are intensive labor, low-interactive and difficult to attract and motivate visitors. The mechanism of game-based learning provides visitors opportunity to interaction with exhibits. Augmented reality can draw players attention on the learning content, applying the technology in interestingly and novelty ways to enhance players’ learning motivation. The system developed in the study is to improves the students’ history and culture learning effectiveness. In addition, the game scenario and background story based on the situated context of museum exhibits to immerse players in the game.
This research develops an educational augmented reality-based alternate reality game ”Love Mystery In Sugar History.” The content of the game based on history of Sugar Refinery Cultural Park and integrate early 20th century scenario, checking mechanism by augmented reality, collaboration, and puzzle solving. A total of 91 adults in northern Taiwan participated in this study, and the empirical research aims to explore the learner's learning effectiveness, flow status, technological acceptance, sense of place, learning motivation and sense of different pattern of game. The results revealed that the proposed approach improved the students’ learning effectiveness and our game makes museum more valuable. Moreover, the average scores of flow status, acceptance and learning motivation are higher than the median. The study also provided suggestions and implication for future researchers with the results of all empirical analyses.

摘要 I 目錄 III 圖次 VI 表次 VII 第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與研究問題 5 第貳章 文獻探討 7 第一節 基於博物館之學習 7 第二節 遊戲式學習 8 第三節 情境式學習 11 第四節 鷹架理論 13 第五節 擴增實境應用於教學 15 第六節 小結.. 17 第参章 研究方法 18 第一節 研究設計 18 第二節 研究對象 18 第三節 研究工具 18 一、遊戲系統 19 二、參與遊戲同意書 30 三、基本資料問卷 30 四、心流問卷 30 五、科技接受度問卷 30 六、學習成效前後測 31 七、地方感問卷 31 八、動機反應問卷 31 九、呈現形式感受量表 31 第四節 研究程序 35 第五節 資料蒐集與分析方法 36 第肆章 研究結果 38 第一節 學習者對於「糖史情謎」之學習成效、心流狀態、科技接受度、地方感、學習動機 38 一、學習成效 38 二、心流狀態 39 三、接受度 40 四、地方感 41 五、學習動機 42 第二節 不同性別的學習者在學習成效、心流狀態、地方感、接受度與學習動機的差異 43 第三節 高、低心流狀態學習者在學習成效後測、地方感與接受度的差異..... 45 第四節 高、低學習成效學習者在心流狀態、地方感與接受度的差異 46 第五節 相關與路徑分析 48 一、相關分析 48 二、路徑分析 50 第六節 呈現形式感受分析 54 第伍章 討論 57 第一節 學習者對於「糖史情謎」之學習成效、心流狀態、科技接受度、地方感、學習動機 57 第二節 不同性別的學習者在學習成效、心流狀態、地方感、科技接受度與的差異 58 第三節 高、低心流狀態的學習者在地方感、接受度與學習成效後測的差異.... 59 第四節 高、低學習成效的學習者在心流狀態、地方感與接受度的差異 59 第五節 相關與路徑分析 60 第六節 學習者對於「糖史情謎」以不同形式呈現的感受的差異 60 第陸章 結論與建議 62 第一節 結論. 62 第二節 建議. 64 一、遊戲系統發展方面 64 二、教學實務運用方面 65 三、未來研究上的建議 66 參考文獻 68 附錄一:參與遊戲同意書 78 附錄二:基本資料問卷 79 附錄三:心流問卷 80 附錄四:科技接受度問卷 81 附錄五:學習成效評量 82 附錄六:地方感問卷 86 附錄七:動機反應問卷 87

陳麗純 (2008)。以 ARCS動機模式分析大學生圖書館利用教育之學習動機,輔仁大學圖書資訊學系,碩士論文。
陳宥瑄、張皓甯、盧玫如 (2018)。情境感知行動遊戲式博物館導覽分組策略研究,中華印刷科技年報,143-161。
蕭顯勝、陳俊臣、李鴻毅 (2013)。應用擴增實境技術建構互動學習環境-以國立臺灣科學教育館為例。
李侑運、陳昱錡、侯惠澤 (2020,已接受)。結合角色扮演與擴增實境鷹架的博物館實境卡片解謎遊戲之設計與評估,全球華人計算機教育應用大會,The 24rd Global Chinese Conference on Computer Education (GCCCE, 2020),蘭州,中國。
Abrahamson, D., & Kapur, M. (2018). Reinventing discovery learning: a field-wide research program. Instructional Science, 46(1), 1-10.
Abou‐Shouk, M. A., Zoair, N., El‐Barbary, M. N., & Hewedi, M. M. (2018). Sense of place relationship with tourist satisfaction and intentional revisit: Evidence from Egypt. International Journal of Tourism Research, 20(2), 172-181.
Alessi, S. M., & Trollip, S. R. (2000). Multimedia for learning: Methods and development. Allyn & Bacon, Inc..
Alakärppä, I., Jaakkola, E., Väyrynen, J., & Häkkilä, J. (2017, September). Using nature elements in mobile AR for education with children. In Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services (pp. 1-13).
Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and virtual environments, 6(4), 355-385.
Beale, K. (2011). Museums at play: games, interaction and learning. MuseumsEtc.
Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational researcher, 18(1), 32-42.
Chang, K. E., Chang, C. T., Hou, H. T., Sung, Y. T., Chao, H. L., & Lee, C. M. (2014). Development and behavioral pattern analysis of a mobile guide system with augmented reality for painting appreciation instruction in an art museum. Computers & education, 71, 185-197.
Chang, S. P., Hou, H. T., & Chang, R. C. (2015). Development and application of game-based learning software combining role-playing with problem-solving strategies. Advances in Social Sciences Research Journal, 2(6).
Chang, Y. L., Hou, H. T., Pan, C. Y., Sung, Y. T., & Chang, K. E. (2015). Apply an augmented reality in a mobile guidance to increase sense of place for heritage places. Journal of Educational Technology & Society, 18(2), 166-178.
Chiang, T. H., Yang, S. J., & Hwang, G. J. (2014). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. Journal of Educational Technology & Society, 17(4), 352-365.
Chen, C. H., & Law, V. (2016). Scaffolding individual and collaborative game-based learning in learning performance and intrinsic motivation. Computers in Human Behavior, 55, 1201-1212.
Chiou, C. K., Tseng, J. C., Hwang, G. J., & Heller, S. (2010). An adaptive navigation support system for conducting context-aware ubiquitous learning in museums. Computers & Education, 55(2), 834-845.
Canova Calori, I., Rossitto, C., & Divitini, M. (2013). Understanding Trajectories of Experience in Situated Learning Field Trips.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
Diamond, J., Horn, M., & Uttal, D. H. (2016). Practical evaluation guide: Tools for museums and other informal educational settings. Rowman & Littlefield.
Falk, J., & Storksdieck, M. (2005). Using the contextual model of learning to understand visitor learning from a science center exhibition. Science education, 89(5), 744-778.
Falk, J.H. and Dierking, L.D. (2013), The Museum Experience Revisited, Left Coast Press, Walnut Creek.
Furió, D., GonzáLez-Gancedo, S., Juan, M. C., Seguí, I., & Rando, N. (2013). Evaluation of learning outcomes using an educational iPhone game vs. traditional game. Computers & Education, 64, 1-23.
Hamari, J., Shernoff, D. J., Rowe, E., Coller, B., Asbell-Clarke, J., & Edwards, T. (2016). Challenging games help students learn: An empirical study on engagement, flow and immersion in game-based learning. Computers in human behavior, 54, 170-179.
Hou, H. T., & Chou, Y. S. (2012). Exploring the technology acceptance and flow state of a chamber escape game-Escape The Lab© for learning electromagnet concept. ICCE 2012, 38.
Hou, H. T., Wu, Y. S., & Chou, Y. S. (2014, May). How technology acceptance affects flow antecedent and flow experience in a simulation-based science education game: A preliminary path analysis. In Paper presented at the global Chinese conference on computers in education (GCCCE 2014), Shanghai,China.
Hou, H. T., Wu, S. Y., Lin, P. C., Sung, Y. T., Lin, J. W., & Chang, K. E. (2014). A blended mobile learning environment for museum learning. Journal of Educational Technology & Society, 17(2), 207-218.
Huang, Y. M., Liao, Y. W., Huang, S. H., & Chen, H. C. (2014). A Jigsaw-based Cooperative Learning Approach to Improve Learning Outcomes for Mobile Situated Learning. Educational Technology & Society, 17(1), 128-140.
Huang, T. C., Chen, C. C., & Chou, Y. W. (2016). Animating eco-education: To see, feel, and discover in an augmented reality-based experiential learning environment. Computers & Education, 96, 72-82.
Huynh, D. N. T., Raveendran, K., Xu, Y., Spreen, K., & MacIntyre, B. (2009, August). Art of defense: a collaborative handheld augmented reality board game. In Proceedings of the 2009 ACM SIGGRAPH symposium on video games (pp. 135-142).
Hung, Y. H., Chen, C. H., & Huang, S. W. (2017). Applying augmented reality to enhance learning: a study of different teaching materials. Journal of Computer Assisted Learning, 33(3), 252-266.
Hsi, S. (2003). A study of user experiences mediated by nomadic web content in a museum. Journal of Computer Assisted Learning, 19(3), 308-319.
Hsiao, H. S., Chang, C. S., Lin, C. Y., & Wang, Y. Z. (2016). Weather observers: a manipulative augmented reality system for weather simulations at home, in the classroom, and at a museum. Interactive Learning Environments, 24(1), 205-223.
Hsieh, Y. H., Yi-Chun, L., & Hou, H. T. (2015). Exploring elementary-school students' engagement patterns in a game-based learning environment. Journal of Educational Technology & Society, 18(2), 336.
Hsu, T. Y., Liang, H., Chiou, C. K., & Tseng, J. C. (2018). CoboChild: a blended mobile game-based learning service for children in museum contexts. Data Technologies and Applications.
Hwang, G. J., Wu, P. H., & Chen, C. C. (2012). An online game approach for improving students’ learning performance in web-based problem-solving activities. Computers & Education, 59(4), 1246-1256.
Iwata, T., Yamabe, T., & Nakajima, T. (2011, August). Augmented reality go: extending traditional game play with interactive self-learning support. In 2011 IEEE 17th International Conference on Embedded and Real-Time Computing Systems and Applications (Vol. 1, pp. 105-114). IEEE.
Jackson, S. & Marsh, H. (1996). Development and validation of a scale to measure optimal experience: The flow state scale. Journal of Sport & Exercise Psychology, 18, 17–35.
Jerrett, A., Bothma, T.J.D. and de Beer, K. (2017), "Exercising library and information literacies through alternate reality gaming", Aslib Journal of Information Management, Vol. 69 No. 2, pp. 230-254. https://doi.org/10.1108/AJIM-11-2016-0185
Johnson, L., Becker, S. A., Estrada, V., & Freeman, A. (2015). NMC horizon report: 2015 museum edition. The New Media Consortium.
Keller, J. M. (1987). Development and use of the ARCS model of instructional design. Journal of instructional development, 10(3), 2-10.
Keller, J. M. (1987). Strategies for stimulating the motivation to learn. Performance and instruction, 26(8), 1-7.
Kim, B., Park, H., & Baek, Y. (2009). Not just fun, but serious strategies: Using meta-cognitive strategies in game-based learning. Computers & Education, 52(4), 800-810.
Kim, S., & Chang, M. (2010). Computer games for the math achievement of diverse students. Journal of Educational Technology & Society, 13(3), 224-232.
Kiili, K. (2005). Digital game-based learning: Towards an experiential gaming model. The Internet and higher education, 8(1), 13-24.
Kiili, K. (2006). Evaluations of an experiential gaming model. Human Technology: An Interdisciplinary Journal on Humans in ICT Environments.
Kiili, K. (2007). Foundation for problem‐based gaming. British journal of educational technology, 38(3), 394-404.
Klopfer, E., Perry, J., Squire, K., Jan, M. F., & Steinkuehler, C. (2005). Mystery at the museum–A collaborative game for museum education.
Lieberman, G. A., & Hoody, L. L. (1998). Closing the Achievement Gap: Using the Environment as an Integrating Context for Learning. Results of a Nationwide Study.
Li, M. C., & Tsai, C. C. (2013). Game-based learning in science education: A review of relevant research. Journal of Science Education and Technology, 22(6), 877-898.
Lien, Y. H., Wang, C. P., Wang, S. M., Li, C. T., & Hou, H. T. (2019, July). Designing an Escape Room Educational Game and a Game-based Learning Activity for Science Learning: Analysis of Learning Achievement and Flow State. In 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI) (pp. 1049-1050). IEEE.
Lin, P. C., Hou, H. T., & Chang, K. E. (2020). The development of a collaborative problem solving environment that integrates a scaffolding mind tool and simulation-based learning: an analysis of learners’ performance and their cognitive process in discussion. Interactive Learning Environments, 1-18.
Lunce, L. M. (2006). Simulations: Bringing the benefits of situated learning to the traditional classroom. Journal of Applied Educational Technology, 3(1), 37-45.
Lu, C., Chang, M., Kinshuk, Huang, E., & Chen, C. W. (2014). Context-aware mobile role playing game for learning–a case of Canada and Taiwan. Journal of Educational Technology & Society, 17(2), 101-114.
Melero, J., Hernández-Leo, D., & Manatunga, K. (2015). Group-based mobile learning: Do group size and sharing mobile devices matter?. Computers in Human Behavior, 44, 377-385.
McLaren, B., Farzan, R., Adams, D., Mayer, R., & Forlizzi, J. (2017, June). Uncovering gender and problem difficulty effects in learning with an educational game. In International Conference on Artificial Intelligence in Education (pp. 540-543). Springer, Cham.
Mortara, M., Catalano, C. E., Bellotti, F., Fiucci, G., Houry-Panchetti, M., & Petridis, P. (2014). Learning cultural heritage by serious games. Journal of Cultural Heritage, 15(3), 318-325.
Nisi, V., Dionisio, M., Barreto, M., & Nunes, N. (2018). A Mixed Reality neighborhood tour: Understanding visitor experience and perceptions. Entertainment Computing, 27, 89-100.
Nelson, L. M. (1999). Collaborative problem solving. Instructional design theories and models: A new paradigm of instructional theory, 2, 241-267.
Park, E., Baek, S., Ohm, J., & Chang, H. J. (2014). Determinants of player acceptance of mobile social network games: An application of extended technology acceptance model. Telematics and Informatics, 31(1), 3-15.
Pinto, D., Mosquera, J., Gonzalez, C., Tobar-Muñoz, H., Fabregat, R., & Baldiris, S. (2017). Augmented Reality Board Game for supporting learning and motivation in an indigenous community.
Perry, D. L. (2012). What makes learning fun?: principles for the design of intrinsically motivating museum exhibits. Rowman Altamira.
Radu, I., McCarthy, B., & Kao, Y. (2016, March). Discovering educational augmented reality math applications by prototyping with elementary-school teachers. In Virtual Reality (VR), 2016 IEEE (pp. 271-272). IEEE.
Rowe, E., Asbell-Clarke, J., Baker, R. S., Eagle, M., Hicks, A. G., Barnes, T. M., ... & Edwards, T. (2017). Assessing implicit science learning in digital games. Computers in Human Behavior, 76, 617-630.
Saye, J. W., & Brush, T. (2002). Scaffolding critical reasoning about history and social issues in multimedia-supported learning environments. Educational Technology Research and Development, 50(3), 77-96.
Scott, C. A. (Ed.). (2016). Museums and public value: creating sustainable futures. Routledge.
Sedano, C. I., Sutinen, E., Vinni, M., & Laine, T. H. (2012). Designing hypercontextualized games: a case study with LieksaMyst. Journal of Educational Technology & Society, 15(2), 257-270.
Semper, R., & Spasojevic, M. (2002). The Electronic Guidebook: Using Portable Devices and a Wireless Web-Based Network to Extend the Museum Experience.
Sintoris, C., Stoica, A., Papadimitriou, I., Yiannoutsou, N., Komis, V., & Avouris, N. (2012). MuseumScrabble: Design of a mobile game for children’s interaction with a digitally augmented cultural space. In Social and organizational impacts of emerging mobile devices: Evaluating use (pp. 124-142). IGI Global.
Sumadio, D. D., & Rambli, D. R. A. (2010, March). Preliminary evaluation on user acceptance of the augmented reality use for education. In 2010 second international conference on computer engineering and applications (Vol. 2, pp. 461-465). IEEE.
Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337-1370.
Tatar, D., Roschelle, J., Vahey, P., & Penuel, W. R. (2003). Handhelds go to school: Lessons learned. Computer, (9), 30-37.
Taguchi, N., Li, Q., & Tang, X. (2017). Learning Chinese formulaic expressions in a scenario‐based interactive environment. Foreign Language Annals, 50(4), 641-660.
Tobar-Muñoz, H., Baldiris, S., & Fabregat, R. (2017). Augmented reality game-based learning: Enriching students’ experience during reading comprehension activities. Journal of Educational Computing Research, 55(7), 901-936.
Tsai, M. J., Huang, L. J., Hou, H. T., Hsu, C. Y., & Chiou, G. L. (2016). Visual behavior, flow and achievement in game-based learning. Computers & Education, 98, 115-129.
Utsumi, A., Milgram, P., Takemura, H., & Kishino, F. (1994, October). Investigation of errors in perception of stereoscopically presented virtual object locations in real display space. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 38, No. 4, pp. 250-254). SAGE Publications.
Uz Bilgin, C., & Tokel, S. T. (2019). Facilitating contextual vocabulary learning in a mobile-supported situated learning environment. Journal of Educational Computing Research, 57(4), 930-953.
Venkatesh, V., & Morris, M. G. (2000). Why don't men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS quarterly, 115-139.
Vygotsky, L. (1978). Interaction between learning and development. Readings on the development of children, 23(3), 34-41.
Webster, J., Trevino, L. K., & Ryan, L. (1993). The dimensionality and correlates of flow in human-computer interaction. Computers in Human Behavior, 9, 411–426.
Wang, S. M., Chen, K. T., Hou, H. T.*, & Li, C. T. (2017). A science history educational board game with augmented reality integrating collaborative problem solving and scaffolding strategies, paper presented the 25th International Conference on Computers in Education(ICCE2017), December 4-December 8, Christchurch, New Zealand.
Wang, P. Y., Lin, H. T., Wang, S. M., & Hou, H. T. (2019, May). The Development and Evaluation of an Educational Board Game with Augmented Reality Integrating Contextual Clues as Multi-Level Scaffolding for Learning Ecosystem Concepts. In 2019 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW) (pp. 1-2). IEEE.
Wei, X., Weng, D., Liu, Y., & Wang, Y. (2015). Teaching based on augmented reality for a technical creative design course. Computers & Education, 81, 221-234.
Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of child psychology and psychiatry, 17(2), 89-100.
Yoon, S. A., Elinich, K., Wang, J., Van Schooneveld, J. B., & Anderson, E. (2013). Scaffolding informal learning in science museums: How much is too much?. Science Education, 97(6), 848-877.
Zainuddin, N., Sahrir, M. S., Idrus, R. M., & Jaffar, M. N. (2017). Scaffolding a Conceptual Support for Personalized Arabic Vocabulary Learning Using Augmented Reality (AR) Enhanced Flashcards. Journal of Personalized Learning, 2(1), 95-103.
Zhang, J., Sung, Y. T., Hou, H. T., & Chang, K. E. (2014). The development and evaluation of an augmented reality-based armillary sphere for astronomical observation instruction. Computers & education, 73, 178-188.

QR CODE