簡易檢索 / 詳目顯示

研究生: 陳新和
Hsin-Ho Chen
論文名稱: 剪切稀化水膠搭載氧化應答奈米粒子對人類臍靜脈內皮細胞於氧化壓力環境下之效用
Effects of shear-thinning hydrogels containing reactive oxygen species-responsive nanoparticles on human umbilical vein endothelial cells under oxidative stress
指導教授: 鄭詠馨
Yung-Hsin Cheng
口試委員: 施劭儒
Shao-Ju Shih
楊凱強
Kai-Chiang-Yang
游佳欣
Jia-Shing Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 92
中文關鍵詞: 周邊動脈疾病丹參酸B氧化壓力剪切稀化
外文關鍵詞: peripheral artery disease, alvianolic acid B, oxidative pressure, shear thinning
相關次數: 點閱:180下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 周邊動脈疾病 (Peripheral Artery Disease, PAD) 主要影響內臟和下肢的動脈,是全身系統性動脈粥狀硬化的結果。起因於缺血及血管內皮細胞損傷,造成與氧化壓力相關之發炎反應、脂肪斑塊堆積,進而形成血栓。當前常見的治療方法為藥物治療,但若藥物治療無法改善或症狀惡化,則會改用經皮穿刺動脈腔內整形術、血管繞道手術等治療方法,然而由於缺血位置的限制及疾病的惡化程度,許多患者已無法再進行血管重建手術。


    Peripheral Artery Disease (PAD) mainly affects the arteries of the internal organs and lower extremities, resulting in systemic atherosclerosis throughout the body. Caused by ischemia and vascular endothelial cell damage, PAD leads to inflammation, accumulation of fatty plaques, and thrombus formation. The current common treatment method is drug therapy, however, if the drug treatment fails to improve or makes the symptoms worse, treatment methods such as percutaneous transarterial plastic surgery and vascular bypass surgery will be used. However, many patients with PAD are not eligible for revascularization procedures due to anatomic location of the lesions or the extent of disease.

    摘要 Abstract 誌謝 圖索引 表目錄 緒論 文獻回顧 材料方法 結果與討論 結論 參考文獻

    [1] J. Shu, G. Santulli, Update on peripheral artery disease: Epidemiology and evidence-based facts, Atherosclerosis 275 (2018) 379–381.
    [2] Y.W. Chi, M.R. Jaff, Optimal risk factor modification and medical management of the patient with peripheral arterial disease, Catheterization and Cardiovascular Interventions 71(4) (2008) 475-489.
    [3] Hiatt WR, Goldstone J, Smith SC, McDermott M, Moneta G, Oka R, Newman AB, Pearce WH; American Heart Association Writing Group 1. Atherosclerotic Peripheral Vascular Disease Symposium II: nomenclature for vascular diseases. Circulation. (2008) 118:2826–2829.
    [4] M.E. Giswold, G.J. Landry, G.J. Sexton, R.A. Yeager, J.M. Edwards, L.M. Taylor, Jr., G.L. Moneta, Modifiable patient factors are associated with reverse vein graft occlusion in the era of duplex scan surveillance, Journal of Vascular Surgery 37(1) (2003) 47-53.
    [5] A. Gistera, G.K. Hansson, The immunology of atherosclerosis, Nature Reviews Nephrology 13(6) (2017) 368-380.
    [6] K. Theodorou, R.A. Boon, Endothelial Cell Metabolism in Atherosclerosis, Frontiers in Cell and Developmental Biology 6 (2018) 82.
    [7] J.L. Mehta, D.Y. Li, Inflammation in ischemic heart disease: Response to tissue injury or a pathogenetic villain?, Cardiovascular Research 43 (1999) 291-299.
    [8] P.W. Eggers, D. Gohdes, J. Pugh, Nontraumatic lower extremity amputations in the Medicare end-stage renal disease population, Kidney International 56(4) (1999) 1524-1533.
    [9] M.T. Nguyen, S. Fernando, N. Schwarz, J.T. Tan, C.A. Bursill, P.J. Psaltis, Inflammation as a Therapeutic Target in Atherosclerosis, Journal of Clinical Medicine 8(8) (2019) 1109.
    [10] X.G. Li Ma, Wei Chen, Inhibitory effects of oleoylethanolamide (OEA) on H2O2-induced human umbilical vein endothelial cell (HUVEC) injury and apolipoprotein E knockout (ApoE-/-) atherosclerotic mice, International Journal of Clinical and Experimental Pathology 8(6) (2015) 6301-6311.
    [11] S.L. Parvar, R. Fitridge, J. Dawson, S.J. Nicholls, Medical and lifestyle management of peripheral arterial disease, Journal of Vascular Surgery 68(5) (2018) 1595-1606.
    [12] A. Ward, S.P. Clissold, Pentoxifylline A Review of its Pharmacodynamic and Pharmacokinetic Properties, and its Therapeutic Efficacy Drugs 34(1) (1987) 50-97.
    [13] R. Bedenis, M. Stewart, M. Cleanthis, P. Robless, D.P. Mikhailidis, G. Stansby, Cilostazol for intermittent claudication, Cochrane Database of Systematic Reviews (10) (2014) CD003748.
    [14] A.K. Thukkani, S. Kinlay, Endovascular intervention for peripheral artery disease, Circulation Research 116(9) (2015) 1599-1613.
    [15] S.G. Paul Burns, Andrew W Bradbury, Management of peripheral arterial disease in primary care, The BMJ 326(7389) (2003) 584–588.
    [16] A. Dua, C.J. Lee, Epidemiology of Peripheral Arterial Disease and Critical Limb Ischemia, Techniques in Vascular and Interventional Radiology 19(2) (2016) 91-95.
    [17] M.R. Nehler, S. Duval, L. Diao, B.H. Annex, W.R. Hiatt, K. Rogers, A. Zakharyan, A.T. Hirsch, Epidemiology of peripheral arterial disease and critical limb ischemia in an insured national population, Journal of Vascular Surgery 60(3) (2014) 686-695.
    [18] J.L. Ungerleider, K.L. Christman, Concise review: injec表 biomaterials for the treatment of myocardial infarction and peripheral artery disease: translational challenges and progress, Stem Cells Transl Med 3(9) (2014) 1090-9.
    [19] Z.C. Tang, W.Y. Liao, A.C. Tang, S.J. Tsai, P.C. Hsieh, The enhancement of endothelial cell therapy for angiogenesis in hindlimb ischemia using hyaluronan, Biomaterials 32(1) (2011) 75-86.
    [20] J. Wang, W. Cui, J. Ye, S. Ji, X. Zhao, L. Zhan, J. Feng, Z. Zhang, Y. Zhao, A cellular delivery system fabricated with autologous BMSCs and collagen scaffold enhances angiogenesis and perfusion in ischemic hind limb, Journal of Biomedical Materials Research Part A 100(6) (2012) 1438-1447.
    [21] Y. Mima, S. Fukumoto, H. Koyama, M. Okada, S. Tanaka, T. Shoji, M. Emoto, T. Furuzono, Y. Nishizawa, M. Inaba, Enhancement of cell-based therapeutic angiogenesis using a novel type of injec表 scaffolds of hydroxyapatite-polymer nanocomposite microspheres, PLoS One 7(4) (2012) e35199.
    [22] Y.H. Choi, S.H. Kim, I.S. Kim, K. Kim, S.K. Kwon, N.S. Hwang, Gelatin-based micro-hydrogel carrying genetically engineered human endothelial cells for neovascularization, Acta Biomaterialia 95 (2019) 285-296.
    [23] P.A. Williams, K.T. Campbell, H. Gharaviram, J.L. Madrigal, E.A. Silva, Alginate-Chitosan Hydrogels Provide a Sustained Gradient of Sphingosine-1-Phosphate for Therapeutic Angiogenesis, Annals of Biomedical Engineering 45(4) (2017) 1003-1014.
    [24] S. Nemati, A. Rezabakhsh, A.B. Khoshfetrat, A. Nourazarian, C. Biray Avci, B. Goker Bagca, H. Alizadeh Sardroud, M. Khaksar, M. Ahmadi, A. Delkhosh, E. Sokullu, R. Rahbarghazi, Alginate-gelatin encapsulation of human endothelial cells promoted angiogenesis in in vivo and in vitro milieu, Biotechnology and Bioengineering 114(12) (2017) 2920-2930.
    [25] Z.D. Zhang, Y.Q. Xu, F. Chen, J.F. Luo, C.D. Liu, Sustained delivery of vascular endothelial growth factor using a dextran/poly(lactic-co-glycolic acid)-combined microsphere system for therapeutic neovascularization, Heart Vessels 34(1) (2019) 167-176.
    [26] S. Lee, A. Stubelius, N. Hamelmann, V. Tran, A. Almutairi, Inflammation-Responsive Drug-Conjugated Dextran Nanoparticles Enhance Anti-Inflammatory Drug Efficacy, ACS Applied Materials & Interfaces 10(47) (2018) 40378-40387.
    [27] W. DROGE, Free Radicals in the Physiological Control of Cell Function, Physiological Reviews 82 (2002) 47-95.
    [28] A.F. Chen, D.D. Chen, A. Daiber, F.M. Faraci, H. Li, C.M. Rembold, I. Laher, Free radical biology of the cardiovascular system, Clin. Sci. 123 (2012) 73–91.
    [29] M.A. Yorek, The role of oxidative stress in diabetic vascular and neural disease, Free Radic. Res. 37 (2003) 471–480.
    [30] H.W. Kim, A. Lin, R.E. Guldberg, M. Ushio-Fukai, T. Fukai, Essential role of extracellular SOD in reparative neovascularization induced by hindlimb ischemia, Circulation Research 101(4) (2007) 409-419.
    [31] J.F. Dopheide, C. Doppler, M. Scheer, V. Obst, M.C. Radmacher, M.P. Radsak, T. Gori, A. Warnholtz, C. Fottner, T. Munzel, A. Daiber, C. Espinola-Klein, Critical limb ischaemia is characterised by an increased production of whole blood reactive oxygen species and expression of TREM-1 on neutrophils, Atherosclerosis 229(2) (2013) 396-403.
    [32] K.M. Poole, C.E. Nelson, R.V. Joshi, J.R. Martin, M.K. Gupta, S.C. Haws, T.E. Kavanaugh, M.C. Skala, C.L. Duvall, ROS-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease, Biomaterials 41 (2015) 166-175.
    [33] D.J. Weiss, G.P. Casale, P. Koutakis, A.A. Nella, S.A. Swanson, Z. Zhu, D. Miserlis, J.M. Johanning, Pipinos, II, Oxidative damage and myofiber degeneration in the gastrocnemius of patients with peripheral arterial disease, Journal of translational medicine 11 (2013) 230.
    [34] Xiao Z, Liu W, Mu Y-p, Zhang H, Wang X-n, Zhao C-q, Chen J-m and Liu P (2020) Pharmacological Effects of Salvianolic Acid B Against Oxidative Damage. Front. Pharmacol. 11:572373. doi: 10.3389/fphar.2020.572373
    [34] G. Du, J. Song, L. Du, L. Zhang, G. Qiang, S. Wang, X. Yang, L. Fang, Chemical and pharmacological research on the polyphenol acids isolated from Danshen: A review of salvianolic acids, Advances in Pharmacology 87 (2020) 1-41.
    [35] X.S. Zhao, B. Zheng, Y. Wen, Y. Sun, J.K. Wen, X.H. Zhang, Salvianolic acid B inhibits Ang II-induced VSMC proliferation in vitro and intimal hyperplasia in vivo by downregulating miR-146a expression, Phytomedicine 58 (2019) 152754.
    [36] G.R. Zhao, H.M. Zhang, T.X. Ye, Z.J. Xiang, Y.J. Yuan, Z.X. Guo, L.B. Zhao, Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B, Food and Chemical Toxicology 46(1) (2008) 73-81.
    [37] C.L. Liu, L.X. Xie, M. Li, S.S. Durairajan, S. Goto, J.D. Huang, Salvianolic acid B inhibits hydrogen peroxide-induced endothelial cell apoptosis through regulating PI3K/Akt signaling, PLoS One 2(12) (2007) e1321.
    [38] J. Zhai, L. Tao, Y. Zhang, H. Gao, X. Qu, Y. Song, S. Zhang, Salvianolic Acid B Attenuates Apoptosis of HUVEC Cells Treated with High Glucose or High Fat via Sirt1 Activation, Evidence-Based Complementary and Alternative Medicine 2019 (2019).
    [39] M. Li, C. Zhao, R.N.S. Wong, S. Goto, Z. Wang, F. Liao, Inhibition of shear-induced platelet aggregation in rat by tetramethylpyrazine and salvianolic acid B, Clinical Hemorheology and Microcirculation 31 (2004) 97-103.
    [40] Q. Shou, Y. Pan, X. Xu, J. Xu, D. Wang, Y. Ling, M. Chen, Salvianolic acid B possesses vasodilation potential through NO and its related signals in rabbit thoracic aortic rings, European Journal of Pharmacology 697(1-3) (2012) 81-87.
    [41] C. Enrico, Nanotechnology-Based Drug Delivery of Natural Compounds and Phytochemicals for the Treatment of Cancer and Other Diseases, in: R. Atta ur (Ed.), Studies in Natural Products Chemistry, Elsevier2019, pp. 91-123.
    [42] S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery, Nature Materials 12(11) (2013) 991-1003.
    [43] A. Raza, T. Rasheed, F. Nabeel, U. Hayat, M. Bilal, H.M.N. Iqbal, Endogenous and Exogenous Stimuli-Responsive Drug Delivery Systems for Programmed Site-Specific Release, Molecules 24(6) (2019) 1117.
    [44] J. Kopecek, Polymer-drug conjugates: origins, progress to date and future directions, Advanced Drug Delivery Reviews 65(1) (2013) 49-59.
    [45] Q. Xu, C. He, C. Xiao, X. Chen, Reactive Oxygen Species (ROS) Responsive Polymers for Biomedical Applications, Macromolecular Bioscience 16(5) (2016) 635-646.
    [46] K.M. Poole, C.E. Nelson, R.V. Joshi, J.R. Martin, M.K. Gupta, S.C. Haws, T.E. Kavanaugh, M.C. Skala, C.L. Duvall, ROS-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease, Biomaterials 41 (2015) 166-175.
    [47] N. Ma, Y. Li, H. Ren, H. Xu, Z. Li, X. Zhang, Selenium-containing block copolymers and their oxidation-responsive aggregates, Polymer Chemistry 1(10) (2010) 1609-1614.
    [48] X. Tan, Y. Yu, K. Liu, H. Xu, D. Liu, Z. Wang, X. Zhang, Single-molecule force spectroscopy of selenium-containing amphiphilic block copolymer: toward disassembling the polymer micelles, Langmuir 28(25) (2012) 9601-9605.
    [49] L. Wang, F. Fan, W. Cao, H. Xu, Ultrasensitive ROS-Responsive Coassemblies of Tellurium-Containing Molecules and Phospholipids, ACS Applied Materials & Interfaces 7(29) (2015) 16054-16060.
    [50] A.H.K. Henry G. Kuivila, and Edward J. Soboczenski, Areneornates from Diols and Polyols, Journal of the American Chemical Society 76 (1954) 870-874.
    [51] H.G.K.a.A.G. Armour, Electrophilic Displacement Reactions. IX. Effects of Substituents on Rates of Reactions between Hydrogen Peroxide and Benzeneboronic Acid1, Journal of the American Chemical Society 79 (1957) 5659-5662.
    [52] C. de Gracia Lux, S. Joshi-Barr, T. Nguyen, E. Mahmoud, E. Schopf, N. Fomina, A. Almutairi, Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide, Journal of the American Chemical Society 134(38) (2012) 15758-15764.
    [53] F. Chen, G. Huang, H. Huang, Preparation and application of dextran and its derivatives as carriers, International Journal of Biological Macromolecules 145 (2020) 827-834.
    [54] K.E. Broaders, S. Grandhe, J.M. Frechet, A biocompatible oxidation-triggered carrier polymer with potential in therapeutics, Journal of the American Chemical Society 133(4) (2011) 756-758.
    [55] W. Lv, J. Xu, X. Wang, X. Li, Q. Xu, H. Xin, Bioengineered Boronic Ester Modified Dextran Polymer Nanoparticles as Reactive Oxygen Species Responsive Nanocarrier for Ischemic Stroke Treatment, ACS Nano 12(6) (2018) 5417-5426.
    [56] W.D.I. Margarete Arras, Dimitri Scholz, Bernd Winkler, Jutta Schaper, and Wolfgang Schaper, Monocyte Activation in Angiogenesis and Collateral Growth in the Rabbit Hindlimb, Journal of Clinical Investigation 101 (1998) 40-50.
    [57] R. Ross, Atherosclerosis - an inflammatory disease The New England Journal of Medicine 340 (1999) 115-126.
    [58] Y. Yao, H. Zhang, Z. Wang, J. Ding, S. Wang, B. Huang, S. Ke, C. Gao, Reactive oxygen species (ROS)-responsive biomaterials mediate tissue microenvironments and tissue regeneration, Journal of Materials Chemistry B 7(33) (2019) 5019-5037.
    [59] B.A. Aguado, W. Mulyasasmita, J. Su, K.J. Lampe, S.C. Heilshorn, Improving Viability of Stem Cells During Syringe Needle Flow Through the Design of Hydrogel Cell Carriers, Tissue Eng. Part A 18(7-8) (2012) 806-815.
    [60] M.W. Tibbitt, K.S. Anseth, Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture, Biotechnol. Bioeng. 103(4) (2009) 655-663.
    [61] M. Kurdi, R. Chidiac, C. Hoemann, F. Zouein, C. Zgheib, G.W. Booz, Hydrogels as a Platform for Stem Cell Delivery to the Heart, Congestive Heart Failure 16(3) (2010) 132-135.
    [62] A. Gutowska, B. Jeong, M. Jasionowski, Injec表 gels for tissue engineering, Anat. Rec. 263(4) (2001) 342-349.
    [63] P.M. Kharkar, K.L. Kiick, A.M. Kloxin, Designing degradable hydrogels for orthogonal control of cell microenvironments, Chem. Soc. Rev. 42(17) (2013) 7335-7372.
    [64] V.D.M. Gonzaga, A.L. Poli, J.S. Gabriel, D.Y. Tezuka, T.A. Valdes, A. Leitao, C.F. Rodero, T.M. Bauab, M. Chorilli, C.C. Schnnitt, Chitosan-laponite nanocomposite scaffolds for wound dressing application, Journal of Biomedical Materials Research Part B-Applied Biomaterials 108(4) (2020) 1388-1397.
    [65] D.J. Page, C.E. Clarkin, R. Mani, N.A. Khan, J.I. Dawson, N.D. Evans, Injec表 nanoclay gels for angiogenesis, Acta Biomaterialia 100 (2019) 378-387.
    [66] R. Waters, P. Alam, S. Pacelli, A.R. Chakravarti, R.P. Ahmed, A. Paul, Stem cell-inspired secretome-rich injec表 hydrogel to repair injured cardiac tissue, Acta biomaterialia 69 (2018) 95-106.

    無法下載圖示 全文公開日期 2026/08/18 (校內網路)
    全文公開日期 2026/08/18 (校外網路)
    全文公開日期 2026/08/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE