簡易檢索 / 詳目顯示

研究生: 俞甯雅
Ning-Ya Yu
論文名稱: 苯硼酸酯改質葡聚糖氧化應答奈米粒子做為藥物傳遞系統應用於降低人類臍靜脈內皮細胞氧化損傷之研究
Reactive oxygen species-responsive phenylboronic ester-modified dextran nanoparticle as drug delivery system for rescuing human umbilical vein endothelial cells from oxidative damage
指導教授: 鄭詠馨
Yung-Hsin Cheng
口試委員: 施劭儒
Shao-Ju Shih
駱俊良
Chun-Liang Lo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 86
中文關鍵詞: 氧化應答高分子型材料藥物傳遞系統丹參酸B人類臍靜脈內皮細胞
外文關鍵詞: Oxidative responsive polymer-based materials, drug delivery system, salvianolic acid B, human umbilical vein endothelial cells
相關次數: 點閱:218下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 周邊動脈疾病 (Peripheral Artery Disease, PAD) 是常見的全身系統性動脈粥樣硬化及狹窄的表現,好發於下肢動脈,而引起組織性的缺血以及血管內皮細胞的損傷,造成慢性發炎反應、動脈管徑中的凝血反應與最後形成動脈粥樣硬化的病理變化。現行主要治療方式為藥物治療、血管腔內治療及血管繞道手術,然而現行治療方式的目的主要是為了避免血管再次阻塞,但並未積極的治療受損的組織或促使缺血組織之血管新生。丹參酸B (salvianolic acid B, SAB) 為丹參中的一種水溶性活性成分,具有抗氧化和促血管新生的特性,可以透過清除自由基,協同其血管舒張的功能來減輕動脈的阻塞,並保護內皮細胞免於活性氧類 (reactive oxygen species, ROS) 引發的細胞凋亡,並在嚴重阻塞的動脈中協助血管的重建。葡聚糖 (Dextran, DEX) 被指出具有血流改善的心血管保護作用,已被應用在臨床上作為恢復末稍循環及速效營養補充劑多年。在本研究中製備具有氧化應答特性的苯棚酸酯葡聚糖共軛物 (PHB-DEX) 奈米粒子並將SAB包覆其中,含有SAB之奈米粒子能於氧化壓力的疾病環境下較精準的釋放藥物以達到更好的治療效果。
    在本研究中以1,1'-羰基二咪唑 (1,1'-Carbonyldiimidazole, CDI)、 4-(羥甲基)苯硼酸頻哪醇酯 (4-(Hydroxymethyl)phenylboronic acid pinacol ester, PBAP) 及Dextran製備具有氧化應答特性的 PHB-DEX ,利用傅里葉轉換紅外光譜與熱重分析儀分析材料改質前後的特徵峰及熱裂解溫度變化,並進一步評估奈米粒子的形態、粒徑、粒徑分布及界達電位 (zeta potential),而在過氧化氫 (hydrogen peroxide, H2O2) 作用下,也可觀察到所製備出的 PHB-DEX 奈米粒子產生顯著的水解,證明其氧化應答之特性。
    在載藥濃度的選擇上,從細胞存活率的結果顯示, SAB對人類臍靜脈內皮細胞 (human umbilical vein endothelial cells, HUVECs) 的安全濃度約為200 μM,利用所合成 PHB-DEX 之自組裝的特性將SAB包覆於材料中,將載有SAB之奈米粒子分為低、中及高濃度分別與HUVECs進行共培養,發現低及中濃度的SAB奈米粒子具有促進HUVECs細胞增殖特性。在SAB奈米粒子的療效評估上,先以H2O2所誘發HUVECs的氧化壓力再投予含有SAB的奈米粒子,研究結果顯示SAB奈米粒子具有下調受到氧化損傷的 HUVECs 中 IL-6 的基因表現,並且能顯著的使細胞存活率回升。
    本研究結果顯示,包覆SAB之PHB-DEX活性氧應答奈米粒子應具有調節過量ROS所誘發的內皮細胞損傷的能力,未來應用於周邊動脈疾病治療上應具有一定的潛力。


    Peripheral Artery Disease (PAD) is a common systemic disease which feactures atherosclerosis and stenosis. It is more likely to occur in lower extremity arteries, causing tissue ischemia and vascular endothelial cell damage, resulting in chronic inflammation, coagulation and eventually giving rise to atherosclerosis. The current main treatment approaches are drug therapy, intravascular treatment and vascular bypass surgery. However, the main purpose of the current treatment methods is to avoid restenosis but not to actively treat damaged tissues or promote angiogenesis in ischemic tissues. Salvianolic acid B (SAB) is one of the water-soluble bioactive components in Salvia miltiorrhiza. Its antioxidant and angiogenic properties have the effects of relieving the blocked arteries by removing free radicals through synergizing the vasodilation function and protecting endothelial cells from reactive oxygen species (ROS)-induced apoptosis. In severely blocked arteries, SAB can assist the reconstruction of blood vessels. Dextran has been shown to have property of cardiovascular protection by improving blood flow. It has been used clinically for many years and can promote the recovery of blood flow cycle and be treated as fast-acting supplementary. In this reaserch, ROS-responsive-phenylboronic ester-modified dextran nanoparticle were prepared and loaded with SAB. The SAB-loaded nanoparticles can achieve better treatment effect by accurate drug release.
    In this research, 1,1'-carbonyl diimidazole (CDI), 4-(hydroxymethyl) phenylboronic acid pinacol ester (PBAP) and dextran are applied to prepare oxidative responsive PHB-DEX. The characterization of PHB-DEX was confirmed by Fourier transform infrared spectroscopy and thermogravimetric analyzer. The morphology and particle size of nanoparticles, size distribution and zeta potential were evaluated. Under the stimulation of hydrogen peroxide (H2O2), PHB-DEX nanoparticles show the significant hydrolysis property, proving its oxidative response characteristics. In-vitro test of cell viability show that the safety concentration of SAB for human umbilical vein endothelial cells (HUVECs) is 200 μM. During self-assembly of PHB-DEX, SAB was loaded in the NPs to form SAB-NPs which were diluted to formulate low, medium and high concentrations of it. HUVECs were cultured with SAB-NPs and proliferated when treated with low and medium concentrations of SAB-NPs. The efficacy of SAB nanoparticles was evaluated by building up the H2O2-induced oxidative stress model on HUVECs and treated with SAB-NPs. The results show that SAB-NPs can downregulate the gene expression of IL-6 in HUVECs undergone H2O2-induced oxidative damage and significantly increase the cell viability. In summary, the SAB-loaded PHB-DEX NP can regulate excessive ROS-induced endothelial cell damage, and have potential for the treatment of PAD in the future.

    摘要 i Abstract iii 誌謝 v 目錄 vi Figure索引 x Table索引 xii Scheme索引 xii 第一章、緒論 2 1.1引言 2 1.2研究動機與目的 2 第二章、文獻回顧 4 2.1 周邊動脈疾病成因與現行治療方式 4 2.1.1 疾病成因 4 2.1.2 現行治療方式 7 2.1.2.1 藥物治療 8 2.1.2.2 經皮血管腔內治療 8 2.1.2.3 血管繞道手術 9 2.1.2.4 藥物輸送系統 9 2.2活性氧類與氧化壓力 10 2.3中草藥:丹參酸B 13 2.4 活性氧類應答奈米粒子 15 2.4.1 含硫醚 (Thioether) 聚合物 16 2.4.2 含硒 (Selenium) 聚合物 17 2.4.3 含碲 (Tellurium) 聚合物 18 2.4.4 含苯硼酸/苯硼酸酯 (Phenylboronic Acid/Phenylboronic Ester) 聚合物 18 第三章、材料方法 22 3.1 實驗材料 22 3.2 實驗儀器 23 3.3 實驗流程 25 3.4 細胞培養 26 3.5 丹參酸 B 對 HUVEC 的安全濃度 27 3.6 製備載藥活性氧類應答奈米粒子 29 3.6.1 苯硼酸酯接枝葡聚糖合成 30 3.6.1.1 傅里葉轉換紅外線光譜測定 31 3.6.1.2 熱重分析儀 31 3.6.2 氧化應答奈米粒子製備 32 3.6.2.1 穿透式電子顯微鏡 32 3.6.2.2 雷射奈米粒徑電位分析儀 33 3.6.2.3 藥物包覆率 33 3.6.2.4 奈米粒子於氧化壓力下的水解 34 3.6.2.5 細胞存活率 34 3.7 載藥奈米粒子於氧化壓力下對 HUVECs 的療效 35 3.7.1 細胞氧化損傷模型建立 35 3.7.2 RNA 萃取和基因表現 36 3.7.3 細胞存活率 38 3.8 統計分析方法 39 第四章、結果與討論 40 4.1 丹參酸B對HUVECs的安全濃度 40 4.2 苯硼酸酯接枝葡聚糖合成 43 4.2.1 傅里葉轉換紅外線光譜測定 43 4.2.2 熱重分析 45 4.3氧化應答奈米粒子製備 48 4.3.1 表面型態 48 4.3.2 奈米粒子粒徑與界達電位 49 4.3.3 藥物包覆率 50 4.3.4 奈米粒子於氧化壓力下的水解 52 4.3.5 細胞存活率 54 4.4 載藥奈米粒子於氧化壓力下對 HUVECs 的療效 55 4.4.1 細胞氧化損傷模型建立 55 4.4.2 RNA萃取和基因表現 56 4.4.3細胞存活率 57 第五章、結論 60 參考文獻 62  

    [1] J. Shu, G. Santulli, Update on peripheral artery disease: Epidemiology and evidence-based facts, Atherosclerosis 275 (2018) 379–381.
    [2] Y.W. Chi, M.R. Jaff, Optimal risk factor modification and medical management of the patient with peripheral arterial disease, Catheterization and Cardiovascular Interventions 71(4) (2008) 475-489.
    [3] M.H.C. Alan T. Hirsch, Diane Treat-Jacobson, RN Judith G. Regensteiner, Mark A. Creager, Jeffrey W. Olin, Susan H. Krook, Donald B. Hunninghake, Anthony J. Comerota, M. Eileen Walsh, Mary M. McDermott, William R. Hiatt, Peripheral Arterial Disease Detection, Awareness, and Treatment in Primary Care, American Medical Association 286(11) (2001) 1317-1324.
    [4] M.E. Giswold, G.J. Landry, G.J. Sexton, R.A. Yeager, J.M. Edwards, L.M. Taylor, Jr., G.L. Moneta, Modifiable patient factors are associated with reverse vein graft occlusion in the era of duplex scan surveillance, Journal of Vascular Surgery 37(1) (2003) 47-53.
    [5] A. Gistera, G.K. Hansson, The immunology of atherosclerosis, Nature Reviews Nephrology 13(6) (2017) 368-380.
    [6] K. Theodorou, R.A. Boon, Endothelial Cell Metabolism in Atherosclerosis, Frontiers in Cell and Developmental Biology 6 (2018) 82.
    [7] J.L. Mehta, D.Y. Li, Inflammation in ischemic heart disease: Response to tissue injury or a pathogenetic villain?, Cardiovascular Research 43 (1999) 291-299.
    [8] P.W. Eggers, D. Gohdes, J. Pugh, Nontraumatic lower extremity amputations in the Medicare end-stage renal disease population, Kidney International 56(4) (1999) 1524-1533.
    [9] G. Brevetti, G. Giugliano, L. Brevetti, W.R. Hiatt, Inflammation in peripheral artery disease, Circulation 122(18) (2010) 1862-1875.
    [10] M.T. Nguyen, S. Fernando, N. Schwarz, J.T. Tan, C.A. Bursill, P.J. Psaltis, Inflammation as a Therapeutic Target in Atherosclerosis, Journal of Clinical Medicine 8(8) (2019) 1109.
    [11] X.G. Li Ma, Wei Chen, Inhibitory effects of oleoylethanolamide (OEA) on H2O2-induced human umbilical vein endothelial cell (HUVEC) injury and apolipoprotein E knockout (ApoE-/-) atherosclerotic mice, International Journal of Clinical and Experimental Pathology 8(6) (2015) 6301-6311.
    [12] S.L. Parvar, R. Fitridge, J. Dawson, S.J. Nicholls, Medical and lifestyle management of peripheral arterial disease, Journal of Vascular Surgery 68(5) (2018) 1595-1606.
    [13] A. Ward, S.P. Clissold, Pentoxifylline A Review of its Pharmacodynamic and Pharmacokinetic Properties, and its Therapeutic Efficacy Drugs 34(1) (1987) 50-97.
    [14] R. Bedenis, M. Stewart, M. Cleanthis, P. Robless, D.P. Mikhailidis, G. Stansby, Cilostazol for intermittent claudication, Cochrane Database of Systematic Reviews (10) (2014) CD003748.
    [15] A.K. Thukkani, S. Kinlay, Endovascular intervention for peripheral artery disease, Circulation Research 116(9) (2015) 1599-1613.
    [16] S.G. Paul Burns, Andrew W Bradbury, Management of peripheral arterial disease in primary care, The BMJ 326(7389) ( 2003) 584–588.
    [17] A. Dua, C.J. Lee, Epidemiology of Peripheral Arterial Disease and Critical Limb Ischemia, Techniques in Vascular and Interventional Radiology 19(2) (2016) 91-95.
    [18] M.R. Nehler, S. Duval, L. Diao, B.H. Annex, W.R. Hiatt, K. Rogers, A. Zakharyan, A.T. Hirsch, Epidemiology of peripheral arterial disease and critical limb ischemia in an insured national population, Journal of Vascular Surgery 60(3) (2014) 686-695.
    [19] J.L. Ungerleider, K.L. Christman, Concise review: injectable biomaterials for the treatment of myocardial infarction and peripheral artery disease: translational challenges and progress, Stem Cells Transl Med 3(9) (2014) 1090-9.
    [20] Z.C. Tang, W.Y. Liao, A.C. Tang, S.J. Tsai, P.C. Hsieh, The enhancement of endothelial cell therapy for angiogenesis in hindlimb ischemia using hyaluronan, Biomaterials 32(1) (2011) 75-86.
    [21] J. Wang, W. Cui, J. Ye, S. Ji, X. Zhao, L. Zhan, J. Feng, Z. Zhang, Y. Zhao, A cellular delivery system fabricated with autologous BMSCs and collagen scaffold enhances angiogenesis and perfusion in ischemic hind limb, Journal of Biomedical Materials Research Part A 100(6) (2012) 1438-1447.
    [22] Y. Mima, S. Fukumoto, H. Koyama, M. Okada, S. Tanaka, T. Shoji, M. Emoto, T. Furuzono, Y. Nishizawa, M. Inaba, Enhancement of cell-based therapeutic angiogenesis using a novel type of injectable scaffolds of hydroxyapatite-polymer nanocomposite microspheres, PLoS One 7(4) (2012).
    [23] Y.H. Choi, S.H. Kim, I.S. Kim, K. Kim, S.K. Kwon, N.S. Hwang, Gelatin-based micro-hydrogel carrying genetically engineered human endothelial cells for neovascularization, Acta Biomaterialia 95 (2019) 285-296.
    [24] P.A. Williams, K.T. Campbell, H. Gharaviram, J.L. Madrigal, E.A. Silva, Alginate-Chitosan Hydrogels Provide a Sustained Gradient of Sphingosine-1-Phosphate for Therapeutic Angiogenesis, Annals of Biomedical Engineering 45(4) (2017) 1003-1014.
    [25] S. Nemati, A. Rezabakhsh, A.B. Khoshfetrat, A. Nourazarian, C. Biray Avci, B. Goker Bagca, H. Alizadeh Sardroud, M. Khaksar, M. Ahmadi, A. Delkhosh, E. Sokullu, R. Rahbarghazi, Alginate-gelatin encapsulation of human endothelial cells promoted angiogenesis in in vivo and in vitro milieu, Biotechnology and Bioengineering 114(12) (2017) 2920-2930.
    [26] Z.D. Zhang, Y.Q. Xu, F. Chen, J.F. Luo, C.D. Liu, Sustained delivery of vascular endothelial growth factor using a dextran/poly(lactic-co-glycolic acid)-combined microsphere system for therapeutic neovascularization, Heart Vessels 34(1) (2019) 167-176.
    [27] S. Lee, A. Stubelius, N. Hamelmann, V. Tran, A. Almutairi, Inflammation-Responsive Drug-Conjugated Dextran Nanoparticles Enhance Anti-Inflammatory Drug Efficacy, ACS Applied Materials & Interfaces 10(47) (2018) 40378-40387.
    [28] B. Kwon, C. Kang, J. Kim, D. Yoo, B.R. Cho, P.M. Kang, D. Lee, H2O2-responsive antioxidant polymeric nanoparticles as therapeutic agents for peripheral arterial disease, International Journal of Pharmaceutics 511(2) (2016) 1022-1032.
    [29] S.H. Lee, M.K. Gupta, J.B. Bang, H. Bae, H.J. Sung, Current Progress in Reactive Oxygen Species (ROS)-Responsive Materials for Biomedical Applications, Advanced Healthcare Materials 2(6) (2013) 908-915.
    [30] H. Sies, D.P. Jones, Reactive oxygen species (ROS) as pleiotropic physiological signalling agents, Nature Reviews Molecular Cell Biology 21(7) (2020) 363-383.
    [31] D. Trachootham, J. Alexandre, P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?, Nature Reviews Drug Discovery 8(7) (2009) 579-591.
    [32] W. DROGE, Free Radicals in the Physiological Control of Cell Function, Physiological Reviews 82 (2002) 47-95.
    [33] C. Deby, R. Goutier, New Perspectives on the Biochemistry of Superoxide Anion and the Efficiency of Superoxide Dismutases, Biochemical Pharmacology 39(3) (1990) 399-405.
    [34] R. Chance, H. Sies, A. Boveris, Hydroperoxide Metabolism in Mammalian Organs, Physiological Reviews 59(3) (1979) 527-605.
    [35] U. Forstermann, W.C. Sessa, Nitric oxide synthases: regulation and function, European Heart Journal 33(7) (2012) 829-837.
    [36] S.J. Weiss, Oxygen, ischemia and inflammation, Acta physiologica Scandinavica. Supplementum 548 (1986) 9-37.
    [37] R.M. Joan-Marc Servitja, Rau´l Pardo, Elisabet Sarri, Fernando Picatoste, Effects of Oxidative Stress on Phospholipid Signaling in Rat Cultured Astrocytes and Brain Slices, Journal of Neurochemistry 75 (2000) 788-794.
    [38] M. Schieber, N.S. Chandel, ROS function in redox signaling and oxidative stress, Current Biology 24(10) (2014) R453-462.
    [39] B. Perillo, M. Di Donato, A. Pezone, E. Di Zazzo, P. Giovannelli, G. Galasso, G. Castoria, A. Migliaccio, ROS in cancer therapy: the bright side of the moon, Experimental & Molecular Medicine 52(2) (2020) 192-203.
    [40] S.P. Loukogeorgakis, M.J. van den Berg, R. Sofat, D. Nitsch, M. Charakida, B. Haiyee, E. de Groot, R.J. MacAllister, T.W. Kuijpers, J.E. Deanfield, Role of NADPH oxidase in endothelial ischemia/reperfusion injury in humans, Circulation 121(21) (2010) 2310-2316.
    [41] A. Tarafdar, G. Pula, The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders, International Journal of Molecular Sciences 19(12) (2018) 3824.
    [42] H.W. Kim, A. Lin, R.E. Guldberg, M. Ushio-Fukai, T. Fukai, Essential role of extracellular SOD in reparative neovascularization induced by hindlimb ischemia, Circulation Research 101(4) (2007) 409-419.
    [43] J.F. Dopheide, C. Doppler, M. Scheer, V. Obst, M.C. Radmacher, M.P. Radsak, T. Gori, A. Warnholtz, C. Fottner, T. Munzel, A. Daiber, C. Espinola-Klein, Critical limb ischaemia is characterised by an increased production of whole blood reactive oxygen species and expression of TREM-1 on neutrophils, Atherosclerosis 229(2) (2013) 396-403.
    [44] K.M. Poole, C.E. Nelson, R.V. Joshi, J.R. Martin, M.K. Gupta, S.C. Haws, T.E. Kavanaugh, M.C. Skala, C.L. Duvall, ROS-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease, Biomaterials 41 (2015) 166-175.
    [45] D.J. Weiss, G.P. Casale, P. Koutakis, A.A. Nella, S.A. Swanson, Z. Zhu, D. Miserlis, J.M. Johanning, Pipinos, II, Oxidative damage and myofiber degeneration in the gastrocnemius of patients with peripheral arterial disease, Journal of translational medicine 11 (2013) 230.
    [46] J. Hu, S. Liu, Modulating intracellular oxidative stress via engineered nanotherapeutics, Journal of Controlled Release 319 (2020) 333-343.
    [47] G. Saravanakumar, J. Kim, W.J. Kim, Reactive-Oxygen-Species-Responsive Drug Delivery Systems: Promises and Challenges, Advanced science (Weinheim, Baden-Württemberg, Germany) 4(1) (2016) 1600124.
    [48] Q. Xu, C. He, C. Xiao, X. Chen, Reactive Oxygen Species (ROS) Responsive Polymers for Biomedical Applications, Macromolecular Bioscience 16(5) (2016) 635-646.
    [49] G. Du, J. Song, L. Du, L. Zhang, G. Qiang, S. Wang, X. Yang, L. Fang, Chemical and pharmacological research on the polyphenol acids isolated from Danshen: A review of salvianolic acids, Advances in Pharmacology 87 (2020) 1-41.
    [50] X.S. Zhao, B. Zheng, Y. Wen, Y. Sun, J.K. Wen, X.H. Zhang, Salvianolic acid B inhibits Ang II-induced VSMC proliferation in vitro and intimal hyperplasia in vivo by downregulating miR-146a expression, Phytomedicine 58 (2019) 152754.
    [51] G.R. Zhao, H.M. Zhang, T.X. Ye, Z.J. Xiang, Y.J. Yuan, Z.X. Guo, L.B. Zhao, Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B, Food and Chemical Toxicology 46(1) (2008) 73-81.
    [52] C.L. Liu, L.X. Xie, M. Li, S.S. Durairajan, S. Goto, J.D. Huang, Salvianolic acid B inhibits hydrogen peroxide-induced endothelial cell apoptosis through regulating PI3K/Akt signaling, PLoS One 2(12) (2007) e1321.
    [53] J. Zhai, L. Tao, Y. Zhang, H. Gao, X. Qu, Y. Song, S. Zhang, Salvianolic Acid B Attenuates Apoptosis of HUVEC Cells Treated with High Glucose or High Fat via Sirt1 Activation, Evidence-Based Complementary and Alternative Medicine 2019 (2019).
    [54] K. Yang, Y. Luo, S. Lu, R. Hu, Y. Du, P. Liao, G. Sun, X. Sun, Salvianolic Acid B and Ginsenoside Re Synergistically Protect Against Ox-LDL-Induced Endothelial Apoptosis Through the Antioxidative and Antiinflammatory Mechanisms, Frontiers in Pharmacology 9 (2018) 662.
    [55] M. Li, C. Zhao, R.N.S. Wong, S. Goto, Z. Wang, F. Liao, Inhibition of shear-induced platelet aggregation in rat by tetramethylpyrazine and salvianolic acid B, Clinical Hemorheology and Microcirculation 31 (2004) 97-103.
    [56] Q. Shou, Y. Pan, X. Xu, J. Xu, D. Wang, Y. Ling, M. Chen, Salvianolic acid B possesses vasodilation potential through NO and its related signals in rabbit thoracic aortic rings, European Journal of Pharmacology 697(1-3) (2012) 81-87.
    [57] I.-S. Lay, C.-C. Hsieh, J.-H. Chiu, M.-S. Shiao, W.-Y. Lui, C.-W. Wu, Salvianolic acid b enhances in vitro angiogenesis and improves skin flap survival in sprague-dawley rats1, Journal of Surgical Research 115(2) (2003) 279-285.
    [58] C. Enrico, Nanotechnology-Based Drug Delivery of Natural Compounds and Phytochemicals for the Treatment of Cancer and Other Diseases, in: R. Atta ur (Ed.), Studies in Natural Products Chemistry, Elsevier2019, pp. 91-123.
    [59] S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery, Nature Materials 12(11) (2013) 991-1003.
    [60] A. Raza, T. Rasheed, F. Nabeel, U. Hayat, M. Bilal, H.M.N. Iqbal, Endogenous and Exogenous Stimuli-Responsive Drug Delivery Systems for Programmed Site-Specific Release, Molecules 24(6) (2019) 1117.
    [61] J. Kopecek, Polymer-drug conjugates: origins, progress to date and future directions, Advanced Drug Delivery Reviews 65(1) (2013) 49-59.
    [62] A. Napoli, M. Valentini, N. Tirelli, M. Muller, J.A. Hubbell, Oxidation-responsive polymeric vesicles, Nature Materials 3(3) (2004) 183-189.
    [63] B. Liu, D. Wang, Y. Liu, Q. Zhang, L. Meng, H. Chi, J. Shi, G. Li, J. Li, X. Zhu, Hydrogen peroxide-responsive anticancer hyperbranched polymer micelles for enhanced cell apoptosis, Polymer Chemistry 6(18) (2015) 3460-3471.
    [64] N. Ma, Y. Li, H. Ren, H. Xu, Z. Li, X. Zhang, Selenium-containing block copolymers and their oxidation-responsive aggregates, Polymer Chemistry 1(10) (2010) 1609-1614.
    [65] X. Tan, Y. Yu, K. Liu, H. Xu, D. Liu, Z. Wang, X. Zhang, Single-molecule force spectroscopy of selenium-containing amphiphilic block copolymer: toward disassembling the polymer micelles, Langmuir 28(25) (2012) 9601-9605.
    [66] P. Han, N. Ma, H. Ren, H. Xu, Z. Li, Z. Wang, X. Zhang, Oxidation-responsive micelles based on a selenium-containing polymeric superamphiphile, Langmuir 26(18) (2010) 14414-14418.
    [67] H. Ren, Y. Wu, N. Ma, H. Xu, X. Zhang, Side-chain selenium-containing amphiphilic block copolymers: redox-controlled self-assembly and disassembly, Soft Matter 8(5) (2012) 1460-1466.
    [68] R. Fang, H. Xu, W. Cao, L. Yang, X. Zhang, Reactive oxygen species (ROS)-responsive tellurium-containing hyperbranched polymer, Polymer Chemistry 6(15) (2015) 2817-2821.
    [69] L. Wang, F. Fan, W. Cao, H. Xu, Ultrasensitive ROS-Responsive Coassemblies of Tellurium-Containing Molecules and Phospholipids, ACS Applied Materials & Interfaces 7(29) (2015) 16054-16060.
    [70] A.H.K. Henry G. Kuivila, and Edward J. Soboczenski, Areneornates from Diols and Polyols, Journal of the American Chemical Society 76 (1954) 870-874.
    [71] H.G.K.a.A.G. Armour, Electrophilic Displacement Reactions. IX. Effects of Substituents on Rates of Reactions between Hydrogen Peroxide and Benzeneboronic Acid1, Journal of the American Chemical Society 79 (1957) 5659-5662.
    [72] C. de Gracia Lux, S. Joshi-Barr, T. Nguyen, E. Mahmoud, E. Schopf, N. Fomina, A. Almutairi, Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide, Journal of the American Chemical Society 134(38) (2012) 15758-15764.
    [73] F. Chen, G. Huang, H. Huang, Preparation and application of dextran and its derivatives as carriers, International Journal of Biological Macromolecules 145 (2020) 827-834.
    [74] K.E. Broaders, S. Grandhe, J.M. Frechet, A biocompatible oxidation-triggered carrier polymer with potential in therapeutics, Journal of the American Chemical Society 133(4) (2011) 756-758.
    [75] W. Lv, J. Xu, X. Wang, X. Li, Q. Xu, H. Xin, Bioengineered Boronic Ester Modified Dextran Polymer Nanoparticles as Reactive Oxygen Species Responsive Nanocarrier for Ischemic Stroke Treatment, ACS Nano 12(6) (2018) 5417-5426.
    [76] W.D.I. Margarete Arras, Dimitri Scholz, Bernd Winkler, Jutta Schaper, and Wolfgang Schaper, Monocyte Activation in Angiogenesis and Collateral Growth in the Rabbit Hindlimb, Journal of Clinical Investigation 101 (1998) 40-50.
    [77] R. Ross, Atherosclerosis - an inflammatory disease The New England Journal of Medicine 340 (1999) 115-126.
    [78] Y. Yao, H. Zhang, Z. Wang, J. Ding, S. Wang, B. Huang, S. Ke, C. Gao, Reactive oxygen species (ROS)-responsive biomaterials mediate tissue microenvironments and tissue regeneration, Journal of Materials Chemistry B 7(33) (2019) 5019-5037.

    無法下載圖示 全文公開日期 2025/08/27 (校內網路)
    全文公開日期 2025/08/27 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE