簡易檢索 / 詳目顯示

研究生: Narendra Putra Dipta
Narendra Putra Dipta
論文名稱: 錯位容限寬帶光子學邊緣耦合器面的設定和優化
Design and Optimization of Misalignment-Tolerant Broadband Photonics Edge Coupler Facet
指導教授: 李三良
San-Liang Lee
口試委員: 徐世祥
Shih-Hsiang Hsu
宋峻宇
Jiun-Yu Sung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 81
外文關鍵詞: Optimization, Photonics, Edge coupler, Waveguide
相關次數: 點閱:279下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • In this study, we explored the design and optimization of misalignmenttolerant
    broadband photonics edge coupler facets for use in a coupling scenario
    between a DFB laser die and a Photonic Integrated Circuit (PIC).
    To improve the efficiency of the optimization process, we implemented an
    Artificial Neural Network (ANN) model that estimates the coupling performance
    of an edge coupler facet and then optimizes it using Particle Swarm
    Optimization. We examined three different edge coupler facet designs in
    this study, with the first design having a maximum coupling efficiency of
    around 0.866 and a 3-dB misalignment tolerance of 0.9 micrometers, the
    second design having a maximum coupling efficiency of around 0.963 and
    a 3-dB misalignment tolerance of 0.8 micrometers, and the third design
    having a maximum coupling efficiency of around 0.604 and a 3-dB misalignment
    tolerance of around 1 micrometer. Moreover, The transmission
    in the C and L bands for the first design was found to be in the range of 0.853
    to 0.884, while the second design was in the range of 0.957 to 0.97, and the
    third design had a transmission between 0.557 to 0.703. Furthermore, we
    also designed full-edge coupler designs and analyzed their performance
    in FDTD. The FDTD simulation results in a consistent loss compared to
    the FDE simulation and statistical prediction. For example, for the perfect
    alignment setting, the additional transmission loss is around 1 dB. Although
    the simulation result is not accurate, it is precise, and thus the result is still
    valid.

    1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background and Motivations . . . . . . . . . . . . . . . . 1 1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . 4 1.3 Thesis Contents . . . . . . . . . . . . . . . . . . . . . . . 4 2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 Electromagnetic Waves . . . . . . . . . . . . . . . . . . . 6 2.2 Optical Waveguides . . . . . . . . . . . . . . . . . . . . . 7 2.3 Monochromatic Wave Equation Inside Channel Waveguides 10 2.4 Photonics Edge Couplers . . . . . . . . . . . . . . . . . . 15 2.5 Finite Difference Eigenmode . . . . . . . . . . . . . . . . 17 2.6 Eigenmode Expansion Method . . . . . . . . . . . . . . . 20 2.7 Finite Difference Time Domain . . . . . . . . . . . . . . . 23 2.8 Artificial Neural Network . . . . . . . . . . . . . . . . . . 26 2.9 Particle Swarm Optimization . . . . . . . . . . . . . . . . 29 3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1 Research Workflow . . . . . . . . . . . . . . . . . . . . . 31 3.2 Simulation Set-up . . . . . . . . . . . . . . . . . . . . . . 32 3.3 Artificial Neural Network Model . . . . . . . . . . . . . . 34 3.4 Paricle Swarm Optimizer’s Constraints Handling . . . . . 40 4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 42 4.1 Facet Optimization . . . . . . . . . . . . . . . . . . . . . 42 4.2 Facet Misalignment Tolerance . . . . . . . . . . . . . . . 46 4.3 Spectral Transmission . . . . . . . . . . . . . . . . . . . . 47 4.4 Full-Structure Optimization . . . . . . . . . . . . . . . . . 48 4.5 Full-Scale Device Simulation . . . . . . . . . . . . . . . . 53 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 63

    [1] D. Brake. (2019) Submarine cables: Critical infrastructure for global communications. [Online].
    Available: https://www2.itif.org/2019-submarine-cables.pdf
    [2] Google. (2022) Google’s subsea fiber optics, explained. [Online]. Available: https://cloud.google.
    com/blog/topics/developers-practitioners/googles-subsea-fiber-optics-explained
    [3] B. Saleh and M. Teich, Fundamentals of Photonics, 3rd Edition. Wiley, 2019.
    [4] A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE Journal of Selected Topics in Quantum Electronics,vol. 20, no. 4, pp. 405–416, 2014.
    [5] R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region*,” Journal of Optics A: Pure and Applied Optics, vol. 8, p. 840, 8 2006.
    [6] R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE Journal of Quantum Electronics,vol. 23, no. 1, pp. 123–129, 1987.
    [7] A. Splett, T. Zinke, K. Petermann, E. Kasper, H. Kibbel, H.-J. Herzog, and H. Presting, “Integration of waveguides and photodetectors in sige for 1.3 μm operation,” IEEE Photonics Technology Letters,vol. 6, pp. 59–61, 1994.
    [8] R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, and P. Minzioni, “Coupling strategies for silicon photonics integrated chips invited,” Photon. Res., vol. 7, pp. 201–239, 2 2019.
    [9] T. I. P. S. Roadmap-International. (2020) 2020 ipsr-i integrated photonic systems roadmap chapter silicon photonics. [Online]. Available: https://photonicsmanufacturing.org/sites/default/files/documents/front-end_siph3_0.pdf
    [10] I. Ghannam, B. Shen, F. Merget, and J. Witzens, “Silicon nitride external cavity laser with alignment tolerant multi-mode rsoa-to-pic interface,” IEEE Journal of Selected Topics in Quantum Electronics,vol. 28, pp. 1–10, 2022.
    [11] Y.-C. Tu, P.-H. Fu, and D.-W. Huang, “High-efficiency ultra-broadband multi-tip edge couplers for integration of distributed feedback laser with silicon-on-insulator waveguide,” IEEE Photonics Journal,vol. 11, pp. 1–13, 2019.
    [12] E. Berikaa, S. Bernal, Y. D’Mello, D. Mao, and D. V. Plant, “Misalignment-tolerant ultra-broadband edge coupler based on 10 inverse tapers,” 2021, p. 1.
    [13] J. Wang, Y. Xuan, C. Lee, B. Niu, L. Liu, G. N. Liu, and M. Qi, “Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers.” Optica Publishing Group, 2016, p.M2I.6. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=OFC-2016-M2I.6
    [14] Y. Zhang, S. Liu, W. Zhai, C. Peng, Z. Wang, J. Feng, and J. Guo, “Reconfigurable spot size converter for the silicon photonics integrated circuit,” Opt. Express, vol. 29, pp. 37 703–37 711, 11 2021.
    [15] Y. Xu, X. Zhang, Y. Fu, and Y. Liu, “Interfacing photonics with artificial intelligence: an innovative design strategy for photonic structures and devices based on artificial neural networks,” Photon. Res.,vol. 9, p. B135–B152, 4 2021.
    [16] Google. (2022) Tensorflow. [Online]. Available: https://www.tensorflow.org/
    [17] Ansys. (2022) Lumerical. [Online]. Available: https://www.lumerical.com/
    [18] R. Paschotta. (2022) Optical fiber communications. [Online]. Available: https://www.rp-photonics.com/optical_fiber_communications.html
    [19] K. Okamoto, Chapter 1 - Wave theory of optical waveguides, K. Okamoto, Ed. Academic Press,2006.
    [20] K. Sarabandi. (2010) Constitutive relations: Macroscopic properties of matter. [Online]. Available:
    https://www.eecs.umich.edu/courses/eecs530/lec3-2011.pdf
    [21] G. Putland. (2019) Reflextiontotal en. [Online]. Available: https://commons.wikimedia.org/wiki/File:ReflexionTotal_en.svg
    [22] Y. Messaddeq. (2015) Introduction to dielectric waveguide. [Online]. Available: https://www.lehigh.edu/imi/teched/GlassProcess/Lectures/Lecture%2019_Messaddeq_Dielectricwaveguide.pdf
    [23] R. Sen, “Strip-loaded slot waveguide for highly integrated photonics,” Master’s thesis, University of Eastern Finland, Joensuu, Finland, 2017.
    [24] T. Kuphaldt. (2022) Waveguides. [Online]. Available: https://www.allaboutcircuits.com/textbook/alternating-current/chpt14/waveguides/
    [25] Ansys. (2022) Understanding the mode overlap calculation. [Online]. Available: https://optics.ansys.com/hc/en-us/articles/360034396834-Understanding-the-mode-overlapcalculation
    [26] Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express, vol. 10, pp. 853–864, 8 2002.
    [27] D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Y. S. Sidorin and A. Tervonen, Eds., vol. 4987. SPIE, 2003, p.69 – 82.
    [28] K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, pp. 302–307, 1966.
    [29] A. Gron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 1st ed. O’Reilly Media, Inc., 2017.
    [30] M. J. Kochenderfer and T. A. Wheeler, Algorithms for Optimization, ser. The MIT Press. London,England: MIT Press, Mar. 2019.
    [31] S. W. Park, C. K. Moon, J. C. Han, and J.-I. Song, “1.55-μm dfb lasers utilizing an automatically buried absorptive inasp layer having a high single-mode yield,” IEEE Photonics Technology Letters,vol. 16, pp. 1426–1428, 2004.
    [32] Google. (2022) Google collab. [Online]. Available: https://colab.research.google.com/
    [33] L. Miranda. (2017) Pyswarm. [Online]. Available: https://pyswarms.readthedocs.io/en/latest/index.html
    [34] Ansys. (2022) Eigenmode expansion solver introduction. [Online]. Available: https://optics.ansys.com/hc/en-us/articles/360034396614-MODE-EigenMode-Expansion-EME-solver-introduction

    QR CODE