簡易檢索 / 詳目顯示

研究生: 林珊杉
Shan-shan Lin
論文名稱: 利用有機金屬化學氣相沉積法製備垂直成長二氧化鈦奈米晶體之結構與其光學特性分析
Structural and Optical Characterization of Vertically-aligned Titanium Dioxide Nanocrystals Prepared by MOCVD
指導教授: 黃鶯聲
Ying-Sheng Huang
口試委員: 程光蛟
Kwong-Kau Tiong
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 83
中文關鍵詞: 二氧化鈦有機金屬化學氣相沉積法光激發螢光光譜表面光電壓光譜
外文關鍵詞: Titanium Dioxide, MOCVD, photoluminescence, surface photovoltage
相關次數: 點閱:329下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本次論文研究主要是以使用Ti[OCH(CH3)2]4當前驅物,於垂直冷壁式有機金屬化學氣相沉積(MOCVD)系統中成長垂直成長二氧化鈦(Titanium dioxide,TiO2)奈米晶體。首先藉由在不同基板上沉積金紅石(Rutile)與銳鈦礦(Anantase)結構之二氧化鈦奈米晶體,且藉由改變前驅物溫度成功的成長小於100nm尺寸的二氧化鈦奈米晶體,接著有系統的研究退火對二氧化鈦結晶相的效應,同時探討由銳鈦礦晶相轉換成金紅石晶相與金紅石晶相經退火處理可得品質更好之退火條件。隨後利用拉曼散射光譜儀(Raman Scattering)分析晶體結晶相與晶體結構,場發射式電子顯微鏡(FESEM)觀察其表面形貌與尺寸大小,X光繞射儀(XRD)分析其晶體結晶方向,表面光電壓光譜(SPS)、光吸收光譜(absorption) 與光激發螢光光譜(PL)研究垂直成長二氧化鈦奈米結構晶體之光學特性與相關訊息。
      由拉曼散射光譜儀分析結果,確認成長樣品二氧化鈦之晶相為金紅石結構、銳鈦礦結構,或者兩相共存,並探討所成長之二氧化鈦奈米結構之尺寸與殘留應力效應。場發射式電子顯微鏡觀察出排列整齊且緻密的金紅石與銳鈦礦結構之二氧化鈦奈米柱垂直成長在藍寶石(sapphire,SA)(100)與石英玻璃(fused silica)基板上。X光繞射儀的結果指出在藍寶石(sapphire,SA)(100)基板上的金紅石結構二氧化鈦成長方向為[001],石英玻璃(fused silica)基板上的銳鈦礦結構二氧化鈦成長方向為[110]。利用接近能隙之表面光電壓光譜(SPS)與光吸收光譜(absorption)來決定金紅石與銳鈦礦結構二氧化鈦奈米晶體之間接能隙,分別為3.0 eV與3.2 eV(誤差為±0.02 eV)。光激發螢光光譜(PL)實驗觀察金紅石與銳鈦礦結構二氧化鈦奈米晶體,分析其光激發螢光落在2.03 eV至2.98 eV,其來自於二氧化鈦的氧缺陷所致,此外靠近紅外光區域之光激發螢光光譜(1.5 eV)是來自於金紅石結構二氧化鈦之Ti3+間隙(Ti3+ interstitial)。


    We have studied the growth conditions for the deposition of rutile (R) and anatase (A) phases titanium dioxide (TiO2) nanocrystals (NCs) on various substrates via the technique of cold-wall metal organic vapor deposition (MOCVD). The source reagents used for TiO2 is Ti[OCH(CH3)2]4. Respectively, the crystalline quality of R-TiO2 NCs can be further improved upon higher annealing temperature and thermal-induced phase transformation in A-TiO2 NCs was also studied. Vertically-aligned R-TiO2 NCs were grown on sapphire SA(100) substrate. Well-aligned A-TiO2 NCs were grown on fused silica substrate. The effects of thermal annealing of TiO2 NCs in oxygen atmosphere between 900°C and 1000°C were investigated. A detailed characterization of the structural, surface morphology, orientations, optical properties of TiO2 NCs via field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Raman scattering (RS), photoluminescence (PL), surface photovoltage spectroscopy (SPS) and absorption.
    Raman spectrum confirmed the deposition of pure rutile phase TiO2 and pure anatase phase TiO2. The Raman spectra showed the nanosize induced redshift and peak broadening of TiO2 signatures with respect to that of the bulk counterpart which can be attributed to both the size and residual stress effects. FESEM micrographs revealed the growth of vertically aligned TiO2 NCs on SA(100) and fused silica. The XRD results revealed R- TiO2 NCs with (002) orientation on SA(100) substrate, and A- TiO2 NCs on fused silica with a preferential orientation of (220). The indirect band gap of R- TiO2 and A- TiO2 were determined to be 3.0 ± 0.02 eV and 3.2 ± 0.02 eV, respectively, by analyzing near band edge surface photovoltage and absorption spectrum. The luminescence features from 2.03 eV to 2.98 eV is associated with the oxygen vacancies. The peak at 1.5 eV is ascribed to Ti3+ interstitial.

    中文摘要…………………………………………………………………I 英文摘要…………………………………………………………III 致謝…………………………………………………………IV 目錄…………………………………………………………V 圖索引…………………………………………………………VIII 表索引…………………………………………………………XVI 第一章 緒論 1.1 研究動機…………………………………………………………………………………………………1 1.2 二氧化鈦…………………………………………………………………………………………………3 第二章 實驗方法與步驟 2.1 樣品製備…..…………………………………………………………………………………………6 2.1.1 實驗藥品及規格………………………………………………………………………………………6 2.1.2 清洗基板之藥品…………………………………………………………………………………………7 2.2 有機金屬化學氣相沉積(MOCVD) ………………………………………………………………………8 2.2.1 有機金屬化學氣相沉積(MOCVD)設備……………………………………………………8 2.2.2 垂直成長二氧化鈦奈米晶體沉積步驟………………………………………………9 2.2.3 二氧化鈦奈米晶體退火步驟…………………………………………………………………10 2.3 特性分析方法……………………………………………………………………………………………11 2.2.1 拉曼散射儀(Raman Scattering) ……………………………………………………………………11 2.2.2 場發射掃描式電子顯微鏡(FESEM) …………………………………………………………………11 2.2.3 X-ray繞射儀(XRD) ……………………………………………………………………………………12 2.2.4 表面光電壓光譜(SPV) …………………………………………………………………………………13 2.2.5 光吸收光譜(absorption) …………………………………………………………………………………15 2.2.6 光激發螢光光譜(PL) ……………………………………………………………………………17 第三章 垂直成長二氧化鈦奈米晶體之結構與其光學特性分析 3.1 垂直成長二氧化鈦奈米晶體之成長與特性分析………………………………………………………19 3.1.1 前驅物溫度對金紅石結構二氧化鈦於SA(100)基板之成長與特性分析…………………………20 3.1.2 前驅物溫度對銳鈦礦結構二氧化鈦於fused silica基板之成長與特性分析…………………………30 3.2 熱退火對二氧化鈦奈米晶體之影響與特性分析……………………………………………37 3.2.1 熱退火處理對成長於SA(100)基板上的金紅石結構二氧化鈦之影響與特性分析…………………37 3.2.2 熱退火處理對成長於Fused silica基板上的銳鈦礦結構二氧化鈦之影響與特性…………………48 3.3 垂直成長二氧化鈦奈米晶體之光學特性分析…………………………………………………53 第四章 結論……………………………………………………………………………………………………79 參考文獻………………………………………………………………………………………………………81

    [1] Patzke, G. R., Krumeich, F., and Nesper, R., “Oxidic Nanotubes
    and Nanorods-Anisotropic Modules for a Future Nanotechnology”,
    Angew. Chem. Int. Ed., Vol. 41, No. 14, pp. 2446-2461 (2002)
    [2] Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim,
    F., and Yan, H., “One-Dimensional Nanostructures: Synthesis,
    Characterization, and Applications”, Adv. Mater., Vol. 15, No. 5, pp. 353-
    389 (2003)
    [3] Rao, C. N. R., and Govindaraj, A., “Nanotubes and Nanowires”, Royal Society
    of Chemistr, London (2005)
    [4] Baughman, R. H., Zakhidov, A. V., and de Heer, W. A., “Carbon
    Nanotubes-the Route Toward Applications”, Science, Vol. 297, No. 5582, pp.
    787-792 (2002)
    [5] Chen, R. S., Huang, Y. S., Liang, Y. M., Hsiech, C. S., Tsai, D. S.,
    and Tiong, K. K., “Field Emission of Vertical Aligned Conductive IrO2
    Nanorods”, Appl. Phys. Lett., Vol. 84, No. 9, pp. 1552-1554 (2004)
    [6] Takikawa, H., Matsuia, T., Sakakibara, T., Bendavid, A., and J.Martinb, P.,
    “Properties of Titanium Oxides Film Prepared by Reactive Cathodic Vacuum Arc
    Deposition”, Thin Soild Films, Vol. 348, No. 1-2, pp. 145-151 (1999)
    [7] Yeung, K. S., and Lan, Y. W., “A Simple Chemical Vapor Deposition
    Method for Depoiting Thin TiO2 Films”, Thin Solid Films, Vol. 109, No. 2,
    pp. 169-178 (1983)
    [8] Frenck, H. J., “Deposition of TiO2 Thin Films by Plasma Enhanced
    Decomposition of Tetraiopropya Titanate”, Thin Solid Films, Vol. 201, pp.
    327-335 (1991)
    [9] Yeung, K. S., and Lan, Y. W., “A Simple Chemical Vapor Deposition
    Method for Depoiting Thin TiO2 Films”, Thin Solid Films, Vol. 109, No. 3,
    pp. 169-178 (1983)
    [10]Yoshida, S., “Antireflection Coatings on Metals for Selective Solar
    Absorbers”, Thin Solid Films, Vol. 56, pp. 321-395 (1979)
    [11]Varghese, O. K., and Grimes, C. A., “Metal Oxide Nanoarchitectures
    for Environmental Sensing”, J. Nanosci. Nanotechnol., Vol. 3, No.
    pp. 277-293 (2003)
    [12]Kamata, K., “Rapid Formation of TiO2 Films by a Conventional CVD Method”,
    Journal of Materials Science Letters, Vol. 9, pp. 316 -319 (1990)
    [13]Al-Dmour, H., and Taylor, D. M., “Revisiting the Origin of Open
    Circuit Voltage in Nanocrystalline-TiO2/Polymer Heterojunction Solar Cells”,
    Applied Physics Letters, Vol. 94, pp. 223309- 223309-3 (2009)
    [14]Haeldermans, I., Vandewal, K., Oosterbaan, W. D., Gadisa, A.,
    D'Haen, J. Van Bael, M. K., Manca, J. V., and Mullens, J., “Ground- state
    Charge-Transfer Complex Formation in Hybrid Poly (3- Hexylthiophene):
    Titanium Dioxide Solar Cells”, Applied Physics Letters, Vol. 93, pp. 223302-
    223302-3 (2008)
    [15]Levinson, R., Berdahl, P., and Akbari, H., “Solar Spectral Optical
    Properties of Pigments-Part II:Survey of Common Colorants”, Solar Energy
    Materials and Solar Cells, Vol. 89, pp. 351-389 (2005).
    [16]Clovis, A. L., Glenda, J. C., David, B. L., Anthony, J. O., Darlene, K. S.,
    and Lisa, A. S., “Photocatalytic Inhibition of Algae Growth Using TiO2 and
    WO3 and Cocatalyst Modifications”, Environ. Sci. Technol., Vol. 34, pp.
    44754-44758 (2000).
    [17]Bickley, R. I., Gonzalea-Carreno, T., Lees, J. S., Palmisano, L., and
    Tilley, R. J. D., “A Structural Investigation of Titanium Dioxide
    Photocatalysts”, Solid State Chem., Vol. 92, pp. 178-190 (1991).
    [18]Lin, H., Kumon, S., Kozuka, H., and Yoko, T., “Electrical Properties
    of Sol-Gel-Derived Transparent Titania Films Doped with Ruthenium and
    Tantalum”, Thin Solid Films, Vol. 315, pp. 266-272 (1998).
    [19]Watanabe, T., Fukayama, S., Miyauchi, M., Fujishima A.,and
    Hashimoto, K., “Photocatalytic Activity and Photo-Induced Wettability
    Conversion of TiO2Thin Film Prepared by Sol-Gel Process on a Soda-Lime
    Glass”, Sol-Gel Sci. Technol., Vol. 19, pp. 71-76 (2000).
    [20]Jang, H. K., Whangbo, S.W., Choi, Y. K., Chung, Y. D., Jeong, K.,
    Whang, C. N., Lee, Y. S., Lee, H. S., Choi, J. Y., Kim, G. H., and Kim, T.
    K., “Titanium Oxide Films on Si(100) Deposited by E-Beam Evaporation”, J.
    Vac. Sci. Technol. A, Vol. 18, pp. 2932-2936 (2000).
    [21]Karunagaran, B., Kumar, R. T. R., Mangalaraj, D., Narayandass, S. K., and
    Rao, G. M., “Influence of Thermal Annealing on the Composition and
    Structural Parameters of DC Magnetron Sputtered Titanium Dioxide Thin
    Films”, Cryst. Res. Technol., Vol. 37, pp. 1285-1292 (2002).
    [22]Miyake, S., Honda, K., Kohno, T., Setsuhara, Y., Satou, M. and Chayahara,
    A., “Rutile-Type TiO2 Formation by Ion Beam Dynamic Mixing”, J. Vac. Sci.
    Technol. A, Vol. 10, pp. 3253-3259 (1992).
    [23]Puddephatt, R. J., “Reactivity and Mechanism in the Chemical Vapor
    Deposition of Late Transition Metals”, Polyhedron, Vol. 13, No. 8, pp.
    1233-1243 (1994)
    [24]Maury, F., “Trends in Precursor Selection for MOCVD”, Chem. Vapor Depos.,
    Vol. 2, No. 3, pp. 113-116 (1996)
    [25]Labouriau, A., and Earl, W. L., “Titanium Solid-State NMR in Anatase,
    Brookite and Rutile”, Chem. Phys. Lett., Vol. 270, No3-4, pp. 278-284
    (1997).
    [26]Okimura, K., “Low Temperature Growth of Rutile TiO2 Films in Modified RF
    Magnetron Sputtering”, Surf. Coat. Technol., Vol. 135, No. 2-3, pp. 286-290
    (2001).
    [27]Burgess, D. R., Anderson, T. J., Morris Hotsenpiller, P. A., and Hohman, J.
    L., “Solid Precursor MOCVD of Heteroepitaxial Rutile Phase TiO2”, J. Cryst.
    Growth, Vol. 166, No. 1, pp. 763-768 (1996).
    [28]Sekiya, T., Ohta, S., Kamei, S., Hanakawa, M., and Kurita, S., “Raman
    Spectroscopy and Phase Transition of Anatase TiO2 Under High Pressure”, J.
    Phys. Chem. Solids, Vol. 62, No. 4, pp. 717-721 (2001)
    [29]Hossks, N., Sekiya,T., and Kurita, S., “Excitonic State in Anatase TiO2
    Single Crystal”, J. Lumin., Vol. 72-74, pp. 874-875 (1997).
    [30]Swamy, V., and Dubrovinsky, L. S., “Bulk Modulus of Anatase”, J. Phys. Chem.
    Solids, Vol. 62, No. 4, pp. 673-675 (2001).
    [31]Porto, S. P. S., Fleury, P. A., and Damen, T. C., “Raman Spectra of TiO2,
    MgF2, ZnF2, FeF2, and MnF2”, Phys. Rev., Vol. 154, No. 2, pp. 522-526 (1967)
    [32]Loudon, R., “The Raman Effect in Crystals”, Adv. Phys., Vol. 13, No. 50, pp.
    423-482 (1964)
    [33]Fernandez, I., Cremades, A., and Piqueras, J., “Cathodoluminescence Study of
    Defects in Deformed (110) and (100) Surfaces of TiO2 Single Crystals”,
    Semicond. Sci. Technol., Vol. 20, pp. 239-243 (2005)
    [34]De Haart, L. G. J., and Blasse, G., “The Observation of Exciton Emission
    from Rutile Single Crystals”, Solid State Chem. Vol. 61, pp. 135-136 (1986)
    [35]Ghosh, A. K., Wakim, F. G., and Addiss, R. R., “Photoelectronic Processes in
    Rutile”, Phys. Rev. Vol.184, pp. 979-988 (1969)
    [36]Plugaru, R., Cremads, A., and Piqueras, J., “The Effect of Annealing in
    Different Atmospheres on the Luminescence of Polycrystalline TiO2”, J.
    Phys.: Condens. Matter.Vol. 16, pp. 261-268 (2004)

    無法下載圖示 全文公開日期 2012/06/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE