簡易檢索 / 詳目顯示

研究生: 曾士恩
Shi-En Tseng
論文名稱: 以第三丁基聯胺/三甲基鎵有機金屬化學氣相沉積系統在不同基材上成長氮化鎵一維奈米線之研究
Synthesis of GaN Nanowires on Different Substrates by TMGa-TBHy MOCVD System
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 陳良益
Liang-Yih Chen
胡銘顯
Ming-Shien Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 89
中文關鍵詞: 氮化鎵奈米線第三丁基聯胺有機金屬化學氣相沉積氧化鎂基材鋁酸鋰基材
外文關鍵詞: GaN, Nanowires, i-Butylhydrazine, MOCVD, MgO substrate, LiAlO2 substrate
相關次數: 點閱:182下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用有機金屬化學氣相沉積(MOCVD)系統,將氮源由傳統MOCVD製程中所使用的氨氣(NH3)改為第三丁基聯胺(i-butylhydrazine, TBHy),來與三甲基鎵(trimethyl gallium, TMGa)成長一維奈米結構之氮化鎵奈米線,以有效地降低MOCVD製程的反應溫度。由實驗結果發現,當反應溫度為700℃、V/III供給比為31.4時,藉由掃描式電子顯微鏡(scanning electron microscope, SEM)的量測,可得到一較佳的氮化鎵奈米線之表面形態,長度約為3.0 μm、直徑約為27 nm。第三丁基聯胺除了可以有效降低製程溫度到 700℃外,經由 X光電子能譜(X-ray photoelectron spectrometer, XPS)分析,所成長出的奈米線會有較低的碳汙染量。接著利用六種不同的基材來成長氮化鎵奈米線,分別為:Si(100)、Si(111)、Sapphire、MgO、LiAlO2和GaN,欲藉由降低基材和氮化鎵的晶格常數不匹配度與熱膨脹係數差異,來成長出傾向特定方向的氮化鎵奈米線。在GaN基材上,成長出的氮化鎵奈米線其光激發螢光光譜(photoluminescence, PL)比二維的GaN薄膜強約26.6%,邊際放射峰半高寬為86 meV,顯示特定方向成長出的氮化鎵奈米線,的確有較高的發光量子效率。


    Gallium nitride (GaN) nanowires have been synthesized successfully by metalorganic chemical vapor deposition (MOCVD) technique using trimethygallium (TMGa) and i-butylhydrazine (TBHy) as reactants in the first time. Emphasis of this study is placed on evaluating the possibility of using TBHy, a new nitrogen precursor with lower decomposition temperature than ammonia. By using the new nitrogen precursor can decrease process temperature in traditional MOCVD system and the carbon concentration in GaN nanowires. The best morphology and the crystal quality can be obtained in the following experimental conditions : 700℃ and V/III=31.4. The diameter and length of GaN nanowires are about 27nm and 3 μm. Then, we use six different substrates : Si(100), Si(111), Sapphire, MgO, LiAlO2 and GaN to reduce effects of the difference between lattice mismatch and thermal expansion. In the experimental results, GaN nanowires have the specific direction and the better optical quality on GaN substrate. The photoluminescence (PL) intensity which grown GaN nanowires on GaN substrate is stronger 26.6% than GaN substrate and the FWHM (full width at half maximum) of band edge emission is 86 meV. Hence, this propose makes possible further investigation of increasing the brightness of LED in TMGa-TBHy MOCVD system.

    摘 要 I Abstract II 誌 謝 III 目 錄 V 圖 索 引 VIII 表 索 引 XIII 第一章 緒論 1 1.1 前言 1 1.1.1 氮化鎵的發展與應用 1 1.1.2 氮化鎵的材料特性 5 1.2 氮化鎵磊晶製程簡介 7 1.2.1 鹵素氣相沉積法(HVPE) 7 1.2.2 分子束磊晶法(MBE) 8 1.2.3 有機金屬化學氣相沉積法(MOCVD) 8 1.3 聯胺衍生物系列化合物氮源發展 9 1.4 成長一維奈米結構的方法 12 1.4.1 利用VLS成長 12 1.4.2 氧化物輔助成長法 14 1.4.3 於覆罩層上製作出陣列的成長窗口 15 1.4.4 以一維材料作為基材 16 1.4.5 以鹵素氣相沉積法成長一維奈米材料 17 1.4.6 改變反應時間控制成長型態 18 1.4.7 利用晶格常數較匹配之基材 19 1.5 研究方針與策略 20 第二章 實驗相關部份 21 2.1 實驗氣體及藥品 21 2.2 實驗設備與實驗步驟 26 2.3 分析儀器 31 2.3.1 掃瞄式電子顯微鏡(SEM) 31 2.3.2 X射線繞射儀(XRD) 32 2.3.3 X光電子能譜化學分析儀(XPS) 33 2.3.4 穿透式電子顯微鏡(TEM ) 34 2.3.5 拉曼光譜分析儀(Raman) 35 2.3.6 光激發螢光光譜儀(PL) 36 第三章 結果與討論 38 3.1 TMGa-TBHy 系統成長氮化鎵奈米線的形態分析 38 3.1.1 改變 V/III 原料供給比對成長氮化鎵奈米線的影響 38 3.1.2 改變溫度對成長氮化鎵奈米線的影響 41 3.1.3 改變反應時間對成長氮化鎵奈米線的影響 44 3.2 TMGa-TBHy 系統在不同基材上成長氮化鎵奈米線 48 3.2.1 掃描式電子顯微鏡影像分析 51 3.2.2 X光繞射圖譜分析 55 3.2.3 穿透式電子顯微鏡(TEM)的微結構分析 57 3.2.4 拉曼光譜分析(Raman) 66 3.2.5 X光電子能譜化學分析(XPS) 71 3.2.6 光激發螢光光譜(PL) 73 第四章 結論與未來展望 78 參考文獻 80 附 錄 87 A.金(Au)-鎵(Ga)二元相圖 87 B.各種氮源先驅物的化學結構圖 88 C.各種有機金屬先驅物分解比例與溫度的關係圖 89 作者簡介 90 授 權 書 91

    [1] J. Wu and W. Walukiewicz, “Band gap of InN and group III nitride alloys, ” Superlattices and Microstructures, Vol. 34, pp. 63-75 (2003).
    [2] X. Zhang, P. Kung, D. Walker, J. Piotrowski, A. Rogalski, A. Saxler and M. Razeghi, “Photovoltaic effects in GaN structures with p-n junctions,” Appl. Phys. Lett., Vol. 67, No. 14, pp. 2028-2030 (1995).
    [3] 李亞儒、邱清華、郭浩中、盧廷昌、王興宗、林尚佑,「高效率二維氮化鎵藍光發光二極體陣列」,化合物半導體與光電技術雜誌,第二十四期,第32頁,民國98年。
    [4] S. Nakamura, M. Senoh and T. Mukai,“P-GaN / N-InGaN / N-GaN double-heterostructure blue-light-emitting diodes”, Jpn. J. Appl. Phys., Vol. 32, No. 1A/B, pp. L8-L11 (1993).
    [5] J. V. Smith, Geometrical and Structure Crystallography, Wiley, New York (1982).
    [6] S. Nakamura, S. P. DenBaars, R. Sharma, E. L. Hu, R. Sharma, Y. Gao and T. Fujii, “Increase in the efficiency of GaN-based lighting-emitting diodes via surface roughening,” Appl. Phys. Lett., Vol. 84, No. 6, pp. 855-857 (2004).
    [7] Y. C. Sermon Wu and W. C. Peng, “Enhanced performance of an InGaN-GaN light-emitting diode by roughening the undoped-GaN surface and applying a mirror coating to the sapphire substrate,” Appl. Phys. Lett., Vol. 88, No.18, pp. 181117-18117-3 (2006).
    [8] C. Huh, S. J. Park, E. J. Kang and K. S. Lee, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys., Vol. 93, No. 11, pp. 9383-9385 (2003).
    [9] C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal island,” Nanotechnology, Vol. 18, pp. 445201-445201 (2007).
    [10] M. C. Jeong, B. Y. Oh, M. H. Ham, S. W. Lee and J. M. Myoung, Small, Vol. 3, No. 4, pp. 568-572 (2007).
    [11] H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang and K. S. Chung , “High-brightness light emitting diodes using dislocation-free InGaN/GaN multiquantum-well nanorod arrays ,” Nano Letters, Vol. 4, No. 6, pp. 1059-1062 (2004).
    [12] H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor-deposited single-crystal-line GaN,” Appl. Phys. Lett., Vol. 15, No. 10, pp. 327-328 (1969).
    [13] Web Elements Website, http://www.webelements.com.
    [14] S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, CRC Press, New York (2000).
    [15] H. M. Manasevit, F. M. Erdmann and W. I. Simpson, “The use of metalorganics in the preparation of semiconductor metals,” J. Electrochem. Soc., Vol. 118, No. 11, pp. 1864-1868 (1971).
    [16] S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys., Vol. 31, No. 2B, pp. L139-L142 (1992).
    [17] (a) M. Mizuta, S. Fujieda, Y. Matsumoto and T. Kawamura, “Low temperature growth of GaN and AlN on GaAs utilizing metalorganics and hydrazine,” Jpn. J. Appl. Phys., Vol. 25, No. 12, pp. L945-L948 (1986). (b) S. Fujieda, M. Mizuta and Y. Matsumoto, “Growth characterization of low-temperature MOCVD GaN comparison between N2H4 and NH3,” Jpn. J. Appl. Phys., Vol. 26, No. 12, pp. 2067-2701 (1987). (c) S. Fujieda and Y. Matsumoto, “Structure control of GaN films grown on (001) GaAs substrates by GaAs surface pretreatments,” Jpn. J. Appl. Phys., Vol. 30, No. 9B, pp. L1665-L1667 (1991). (d) D. K. Gaskill, N. Bottka and M. C. Lin, “Growth of GaN films using trimethylgallium and hydrazine,” Appl. Phys. Lett., Vol. 48, No. 21, pp. 1449-1451 (1986).
    [18] Z. Liu, R. T. Lee and G. B. Stringfellow, “Prolysis of tertiarybutylamine alone and with trimethylgallium for GaN growth,” J. Cryst. Growth, Vol. 191, pp. 1-7 (1998).
    [19] E. Bourret-Courchesne, Q. Ye, D. W. Peters, J. Arnold, M. Ahmed, S. J. C. Irvine, R. Kanjolia, L. M. Smith and S. A. Rushworth, “Pyrolysis of dimethylhydrazine and its co-pyrolysis with triethylgallium,” J. Cryst. Growth, Vol. 217, pp. 47-54 (2000).
    [20] R. T. Lee and G. B. Stringfellow, “Pyrolysis of monomethylhydrazine for organometallic vapor-phase epitaxy (OMVPE) growth,” J. Cryst. Growth, Vol. 204, pp. 247-255 (1999).
    [21] SAFC Hitech Website, http://www.safchitech.com.
    [22] H. Sato, H. Takahashi, A. Watanabe and H. Ota, “Preparation of Gan films on sapphire by metalorganic chemical vapor deposition using dimethylhydrazine as nitrogen source,” Appl. Phys. Lett., Vol. 68, No. 25, pp. 3617-3619 (1996).
    [23] J. Wu, H. Yaguchi, H. Nagasawa, Y. Yamaguchi, K. Onabe, Y. Shiraki and R. ITO, “Crystal structure of GaN grown on 3C-SiC substrates by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., Vol. 36, No. 7A, pp. 4241-4245 (1997).
    [24] Y. Kobayashi, F. Scholz and N. Kobayashi, “Surface morphology and carbon incorporation for Hexagonal GaN/(111)B GaAs metalorganic vapor phase epitaxy using dimethylhydrazine and trimethylgallium,” Jpn. J. Appl. Phys., Vol. 36, No. 5A, pp. 2592-2595 (1997).
    [25] J. Wu, H. Yaguchi, K. Onabe, Y. Shiraki and R. ITO, “Metalorganic vapor phase epitaxy growth og high quality cubic GaN on GaAs (100) substrate,” Jpn. J. Appl. Phys., Vol. 37, No. 3B, pp. 1440-1442 (1998).
    [26] Y. J. Hsu, L. S. Hong, K. F. Huang and J. E. Tsay, “Low temperature metalorganic chemical vapor deposition of gallium nitride using dimethydrazine as nitrogen source,” Thin Solid Films, Vol. 419, pp. 33-39 (2002).
    [27] E. H. Park, J. S. Park and T, K. Yoo, “As-grown p-type GaN grown by dimethylhydrazine nitrogen precursor,” J. Cryst. Growth, Vol. 272, pp. 426-431 (2004).
    [28] S. Nishide, T. Yoshimura, Y. Takamatsu, A. Ichige, K. Pak, N. Ohshima and H. Yonezu, “Study of the prolysis of tertiarybutylhhydrazine and GaN film growth,” J. Cryst. Growth, Vol. 189/190, pp. 325-329 (1998).
    [29] U. W. Pohl, K. Knorr, C. Moller, U. Gernert, W. Richter, J. Blasing, J. Christen, J. Gotteriedsen and H. Schumann, “Low-temperature metalorganic vapor phase epitaxy (MOVPE) of GaN using teritarybutylhydrazine,” Jpn. J. Appl. Phys., Vol 38, No. 2A, pp. L105-L107 (1999).
    [30] (a)Y. J. Hsu, L. S. Hong and J. E. Tsay, “Metalorganic vapor-phase epitaxy of GaN from trimethylgallium and tertiarybutylhydrazine,” J. Cryst. Growth, Vol. 252, pp. 144-151 (2003). (b) Y. J. Hsu, L. S. Hong, J. C. Jiang and J. C. Chang, “Effects of hydrogen on GaN metalorganic vapor-phase epitaxy using tertiarybutylhydrazine as nitrogen source,” J. Cryst. Growth, Vol. 266, pp. 347-353 (2004).
    [31] Y. J. Hsu, L. S. Hong and J. C. Jiang, “Quantum chemical study on the gas-phase reaction of tertiarybutylhydrazine: A potential nitrogen - bearing compound for GaN film growth,” Thin Solid Films, Vol. 498, pp. 100-107 (2006).
    [32] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 56, pp. 354-356 (1991).
    [33] A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Scienec, Vol. 279, pp. 208-211 (1998).
    [34] Hiroaki Okamoto, P. R. Subramanian and Linda Kacprzak. Binary Alloy phase diagrams, ASM International, Materials Park.
    [35] (a) N. wang, Y. F. Zhang, Y. H. Tang, C. s. Lee and S.T. Lee, “SiO2-enhanced synthesis of Si nanowires by laser ablation,” Appl. Phys. Lett., Vol. 73, No. 26, pp. 3902-3904 (1998). (b) R. Q. Zhang, Y. Liftshitz, and S. T. Lee, “Oxide– assisted growth of semiconducting nanowires,”Adv. Mater., Vol. 15, No. 7-8, pp. 635-640 (2003). (c) S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, and C. S. Lee, “Semiconductor nanowires from oxides,”J. Mater. Res., Vol. 14, No. 12, pp. 4503-4507 (1999).
    [36] X. Wang, X. Sun, M. Fairchild and S. D. Hersee, “Fabrication of GaN nanowire arrays by confined epitaxy,” Appl. Phys. Lett., Vol. 89, pp. 233115-233115-3 (2006).
    [37] S. D. Hersee, X. Sun and X. Wang, “The controlled growth of GaN nanowires,” Nano Letters, Vol. 6, N0. 8, pp. 1808-1811 (2006).
    [38] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi and P. Yang, “Single-crystal gallium nitride nanotubes,” Nature, Vol. 422, pp. 599-602 (2002).
    [39] H. M. Kim, T. W. Kang and K. S. Chung,“Nanoscale ultraviolet-light-emitting diodes using wide-bandgap Gallium Nitride nanorods,” Adv. Mater., Vol. 15, No. 7-8, pp. 567-569 (2003).
    [40] H. M. Kim, D. S. Kim, D. Y. Kim, T. M. Kang, Y. H. Cho and K. S. Chung, “Growth and characterization of single-crystal GaN nanorods by hydride vapor phase epitaxy,” Appl. Phys. Lett., Vol. 81, No. 12, pp. 2193-2195 (2002).
    [41] Q. Li, J. R. Creighton and G.T. Wang , “The role of collisions in the aligned growth of vertical nanowires,” J. Cryst. Growth, Vol. 310, pp. 3706-3709 (2008).
    [42] T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger and P. Yang, “Crystallographic alignment of high-density gallium nitride nanowires arrays,” Nature Materials, Vol. 3, pp. 524-528 ( 2004).
    [43] O.G. Shpyrko, R. Streitel, V. S. K. Balagurusamy, A. Y. Grigoriev, M. Deutsh, B. M. Ocko, M. Meron, B. Liu and P. S. Pershan, “Crystalline surface phases of the liquid Au-Si eutectic alloy,” Phys. Rev. B, Vol. 76, pp. 245436-1-245436-9 (2007).
    [44] 呂嘉銘,”氮化鎵/氮化鋁薄膜在矽和鋁酸鋰基板上的缺陷分析”,第14頁,國立中山大學95年碩士論文。
    [45] P. Deb, H. Kim, V. Rawat, M. Oliver, S. Kim, M. Marshall, E. Stach and T. Sands,“Faceted and vertically aligned GaN nanorod arrays fabricated without catalysts or lithography,”Nano Letters, Vol. 5, No. 9, pp. 1847-1851 (2005).
    [46] (a) C. C. Chen, C.C. Yeh, C.H. Chen, M. Y. Yu, H. L. Liu, J.J. Wu, K.H. Chen, L. C. Chen, J.Y. Peng and Y.F. Cheng, “Catalytic growth and characterization of Gallium Nitride nanowires,” J. Am. Chem. Soc., Vol. 123, No. 12, pp. 2791-2798 (2001). (b) C. L. Hsiao, L. W. Tu, T. W. Chi, M. Chen, T. F. Yang, C. T. Chia and Y. M. Chang, “Micro-Raman spectroscopy of a single freestanding GaN nanorod grown by molecular beam epitaxy”, Appl. Phys. Lett., Vol. 90, pp. 043102-1-043102-3 (2007). (c) B. Ha, S. H. Seo, C. S. Yoon, J. Yoo, G. C. Yi, C. Y. Park and C. J. Lee, “Optical and field emission properties of thin single-crystalline GaN nanowires,” J. Phys. Chem. B, Vol. 109, pp. 11095-11099 (2005). (d) K. H. Lee and I. G. Chen, “The study of stress nitrogen vacancies on GaN nanowires by Raman scattering and current-voltage measurement,”J. Electrochem.Soc., Vol. 156, No. 4, pp. K59-K63 (2009). (e) A. P. Vajpeyi, A. Georgakilas, G. Tsiakatouras, K. Tsagaraki, M. Androulidaki, S. J. Chua and S. Tripathy, “Effect of substrate temperature on spontaneous GaN nanowire growth and optoelectronic properties, ” Physica E, Vol. 41, pp. 427-430 (2009).
    [47] Y. J. Lin, C. D. Tsai, Y. T. Lyu and C. T. Lee, “X-ray photoelectron spectroscopy study of (NH4)2Sx-treated Mg-doped GaN layers,” Appl. Phys. Lett., Vol. 77, No.5, pp. 687-689 (2000).
    [48] E. E. Reuter, R. Zhang, T. F. Kuech and S.G. Bishop, “Photoluminescence excitation spectroscopy of carbon-doped Gallium Nitride, ” MRS Internet J. Nitride Semicond. Res., Vol. 4S1, G3.67-G3.72 (1999).
    [49] T. Y. Kim, S. H. Lee, Y. H. Mo, H. W. Shim, N. S. Nahm, E. K. Suh, K. Y. Lim and G. S. Park, “Growth of GaN nanowires on Si substrate using Ni catalyst in vertical chemical vapor deposition reactor,” Korean J. Chem. Eng., Vol. 257, pp. 97-103 (2004).
    [50] H. J. Choi, D. H. Kim, T. G. Kim, J. C. Lee and Y. M. Sung, “Various one dimensional GaN nanostructure formed by non-catalytic routes,” J. Electroceram, Vol. 17. No. 17, pp. 221-225 (2006).
    [51] T. S. Cheng, C. T. Foxon, G. B. Ren, J. W. Orton, Y. V. Melnik, I. P. Nikitina, A. E. Nikolaev, S. V. Novikov and V. A. Dmitriev, “Effects of substrate type on the characteristics of GaN epitaxial films grown by molecular beam epitaxy,” Semicond. Sci. Technol., Vol. 12, pp. 917-920 (1997).
    [52] S. M. Lee, M. A. Belkhir, X. Y. Zhu and Y. H. Lee, “Electronic structures of GaN edge dislocation,” Phys. Rev. B, Vol. 61, No. 23, pp. 16033-16039 (2000).
    [53] P. W. Lee, T. R. Omstead, D. R. Mckenna and K. F. Jensen, “In situ mass spectroscopy and thermogravimetric studies of GaAs MOCVD gas phase and surface reactions”, J. Cryst. Growth, Vol. 85, pp. 165-174 (1987).

    無法下載圖示 全文公開日期 2014/08/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE