簡易檢索 / 詳目顯示

研究生: 曾國原
Kuo - Yuan Tzeng
論文名稱: 合成奈米二氧化鈦修飾固態高分子電解質之鋰離子導電機制探討
Study on Li-ion Transport Mechanism in Solid Polymer Electrolyte Modified with Synthesized TiO2 Nanoparticles
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 林智汶
Chi-Wen Lin
陳崇賢
Chorng-Shyan Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 170
中文關鍵詞: 固態高分子二氧化鈦電解質
外文關鍵詞: composite polymer electrolyte, solid polymer electrolyte, TiO2
相關次數: 點閱:303下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,已有許多研究指出使用奈米尺寸的陶瓷填充物混摻入以聚氧化乙烯(PEO)與不同種類鋰鹽所合成之固態高分子電解質中,能提供鋰離子新的傳導途徑,進而提升導電度,但是對於其傳導機制,並不是相當清楚。本研究中,將以自合成之奈米二氧化鈦粒子以混摻的方式加入固態高分子電解質系統中,藉由一系列實驗探討二氧化鈦在電解質中所扮演的角色。
    研究結果發現,以四乙基鈦酸所合成之二氧化鈦具有純的Anatase晶型,粒徑大約5nm左右。在混摻入電解質後,高分子電解質的結晶結構被破壞,玻璃轉移溫度隨著二氧化鈦含量增加而下降,代表能提升高分子鏈段的運動性。從表面型態可看出二氧化鈦均勻分散在於電解質膜中,當固態高分子電解質鋰鹽含量到達20%時,鋰鹽有部分析出現象,也因為如此,二氧化鈦在此鋰鹽含量下,無法有效包覆於高分子中。在固態高分子電解質部分,從FTIR/ATR與NMR得知高分子對鋰鹽的溶和量有限,且當溫度接近於熔點時,能夠解離大多數的離子對。當二氧化鈦混摻入其中,從FTIR/ATR以及XAS發現,二氧化鈦與過氯酸根有鍵結存在,從NMR得知有三種鋰離子環境存在於電解質中,包括鋰離子與過氯酸根所形成的離子對、鋰離子與高分子鏈段上高陰電性氧原子的配位,以及鋰離子與二氧化鈦表面氧原子的配位,且藉由在不同溫度下對鋰離子環境作分析,得知二氧化鈦的確能提升鹽類之溶解度,並且在低溫下二氧化鈦與鋰離子配位環境有較大的貢獻。
    本研究藉由傅立葉紅外線吸收光譜儀(FTIR/ATR)、X光繞射儀(XRD)、微差掃瞄卡計(DSC)、熱重分析儀、掃瞄式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、X光吸收光譜(XAS)、固態核磁共振儀(Solid state NMR)等儀器進行分析鑑定,成功地找出二氧化鈦在電解質中所扮演的角色,並且找出鋰離子在二氧化鈦修飾複合式高分子電解質中的導電機制。


    These years, many research groups have pointed out that a solid polymer electrolyte (SPE) doped with ceramic nano-particles could provide a new Li-ion transport pathway and improve its conductivity. However, the role of the added ceramic nano-particles on Li-ion transport in the modified SPE is still unclear. In this research, the synthesized TiO2 nanoparticles were used to modify the SPE (composite polymer electrolyte, CPE). The role of the TiO2 on Li-ion transport in the CPE was investigated by systematically designing a series of experiments.
    It was found that the nano-sized TiO2 synthesized by the Ti(OC2H5)4 possesses pure Anatase crystalline phase and its particle size is around 5 nm. By the introduction of the nano-sized TiO2 into SPE, its crystalline domain is destroyed, and its glass transition temperature (Tg) declines with an increase the content of TiO2, indicating that the mobility of polymer chain is improved. It was also observed that the TiO2 nanoparticles were dispersed very well in the matrix of the composite polymer electrolyte. Increasing the content of the Li salt leads to an increase in the amount of ion pairs in the SPE. As a result, the TiO2 could not be incorporated well into the composite polymer electrolyte with 20% of Li salt. In the CPE system, the interaction between TiO2 and ClO4- was evidenced by virtue of FTIR/ATR. There are three Li-ion environments involving ion pair(Li+-ClO4-), coordination between Li ion and oxygen atom with higher electro-negativity in the polymer chain and coordination between Li ion and oxygen atom on the surface of TiO2in the CPE. By analyzing the Li ion environments at various temperatures, it is observed that the introduction of the nano-sized TiO2 indeed declines the number of ion pairs and the coordination between Li ion and oxygen atom on the surface of TiO2 is dominant in the Li environment at the lower temperature.
    The role of TiO2 on Li ion transport in the CPE was successfully explored by virtue of FTIR/ATR, XRD, DSC, TEM, XAS and solid state NMR. The transport mechanism of lithium ion in the CPE is also proposed.

    摘要……………………………………………………………………..I Abstract………………………………………………………………...Ⅲ 誌謝…………………………………………………………………….IV 目錄…………………………………………………………………….V 圖目錄………………………………………………………………….X 表目錄……………………………………………………………….. XV 符號表………………………………………………………………..XVI 第一章 緒論與文獻回顧…………………………………………….1 1-1 緒論………………………………………………………………..1 1-2 文獻回顧…………………………………………………………..3 1-2-1 高分子電解質…………………………………………….......3 1-2-2 高分子電解質之種類…………………………………….......4 1-2-2-1 固態高分子電解質 ………………………………….......5 1-2-2-2 膠態高分子電解質………………………………………9 1-2-3 改善固態高分子電解質導電度之研究……………………..12 1-2-4 複合材料…………………………………………………….15 1-2-5 複合式高分子電解質……………………………………….16 1-2-5-1 鋰離子導電機制探討…………………………………..17 1-2-5-2 作用力行為探討………………………………………..22 1-2-6 二氧化鈦材料之簡介……………………………………….23 1-2-7 量子大小尺寸對材料的影響……………………………….26 1-2-8 二氧化鈦之製備方式……………………………………….28 1-2-8-1 高壓水熱法……………………………………………..28 1-2-8-2 溶膠-凝膠法…………………………………………….28 1-2-8-3 溶膠-凝膠法二氧化鈦之改良………………………….30 1-3 研究動機…………………………………………………………32 1-4 研究架構…………………………………………………………34 第二章 儀器基礎原理與測試條件…………………………………35 2-1 X-ray繞射儀(XRD)………………………………………………35 2-1-1 X-ray繞射儀基礎原理……………………………………35 2-1-2 X-ray繞射儀測試條件……………………………………36 2-2 熱重量分析儀(TGA)…………………………………………37 2-2-1熱重量分析儀基礎原理………………………………….37 2-2-2 熱重量分析儀測試條件…………………………………37 2-3 微差掃瞄卡計(DSC)…………………………………………….38 2-3-1 微差掃瞄卡計基礎原理…………………………………38 2-3-2 微差掃瞄卡計測試條件………………………………….38 2-4 掃瞄式電子顯微鏡………………………………………………39 2-4-1 掃瞄式電子顯微鏡………………………………………39 2-4-2 掃瞄式電子顯微鏡測試條件……………………………39 2-5 穿透式電子顯微鏡………………………………………………40 2-5-1 穿透式電子顯微鏡………………………………………40 2-5-2 穿透式電子顯微鏡測試條件……………………………40 2-6 傅立葉紅外線吸收光譜儀(FTIR)………………………………41 2-6-1傅立葉紅外線吸收光譜儀基礎原理……………………..41 2-6-2傅立葉紅外線吸收光譜儀測試條件……………………..42 2-7 X光吸收光譜(XAS) ……………………………………………..42 2-7-1 X光吸收光譜基礎原理………………………………...42 2-7-2 X光吸收光譜測試條件………………………………...49 2-8 固態核磁共振儀…………………………………………………50 2-8-1 固態核磁共振儀基礎原理……………………………….50 2-8-2 固態核磁共振儀測試條件……………………………….57 第三章 實驗…………………………………………………………..58 3-1實驗儀器與藥品…………………………………………………..58 3-1-1 儀器設備………………………………………………………58 3-1-2 實驗藥品………………………………………………………60 3-2 實驗步驟與流程…………………………………………………..61 3-2-1 以四氯化鈦(TiCl4)利用水熱法合成二氧化鈦……………61 3-2-2 以四氯化鈦(TiCl4)利用水熱法添加硫酸根離子 合成二氧化鈦………………………………………………….63 3-2-3 以四乙基鈦酸(Ti(OC2H5)4)利用水熱法合成二氧化鈦…..65 3-2-4 未經改質之高分子電解質膜之合成…………………………67 3-2-5二氧化鈦修飾複合式高分子電解質膜之合成……………….68 3-2-6二氧化鈦及鋰鹽之混摻……………………………………….69 3-2-7 PEO和二氧化鈦混摻之高分子膜…………………………….70 第四章 結果………………………………………………………….72 4-1 奈米二氧化鈦粒子材料結構分析……………………………….72 4-1-1 二氧化鈦熱重量分析探討…………………………………..72 4-1-2 二氧化鈦結晶結構探討……………………………………..74 4-1-3 二氧化鈦粒子之粒徑與表面型態分析…………………….80 4-2 高分子電解質之物性鑑定……………………………………….86 4-2-1 電解質熱分析………………………………………………..86 4-2-2 電解質結晶性分析…………………………………………..93 4-3電解質表面型態特性分析………………………………………..96 4-4傅立葉紅外線光譜特性分析…………………………………….105 4-4-1固態高分子電解質…………………………………………..107 4-4-2二氧化鈦修飾之複合式高分子電解質……………………..111 4-5 X光近邊緣吸收光譜技術探討高分子電解質…………………..116 4-6電解質鋰離子環境及高分子鏈段運動性之特性分析…………..121 4-6-1 固態高分子電解質鋰離子及高分子鏈段運動性之比較….121 4-6-2 固態高分子電解質之鋰離子環境分析…………………….128 4-6-3 以二氧化鈦修飾固態高分子電解質之鋰離子環境分析….133 第五章 討論…………………………………………………………137 5-1奈米級二氧化鈦粒子……………………………………………..137 5-2鹽類含量及二氧化鈦對PEO高分子物性及鏈段運動性之影響 …………………………………………………………………………138 5-3固態高分子電解質之鋰離子運動性與導電度的關連性………..142 5-4藉由特性光譜來探討在固態或複合式高分子電解質之作用力 …………………………………………………………………………143 5-5 固態及複合式高分子電解質中鋰離子環境在不同溫度下之效應 …………………………………………………………………………144 5-6導電機制探討……………………………………………………..149 第六章 結論…………………………………………………………154 第七章 參考文獻……………………………………………………157 圖 目 錄 Figure 1-1 Conduction behavior of Li-ion in the polymer chain………...5 Figure 1-2 Conductivity of various polymer electrolytes……………….10 Figure 1-3 Surface interactions between three forms of dispersed nanosized Al2O3 ceramic and the PEO–LiSO3CF3 electrolyte complex. (A) Al2O3 acidic (B) Al2O3 neutral (C) Al2O3 basic........................................................................................18 Figure 1-4 Schematic presentation of a lithium ion coordinated with two oxygens of PEO and a MgO or BaTiO3 particle……………19 Figure 1-5 7Li MAS NMR spectra of (a) 0 wt.%; (b) 5 wt.%; (c) 10 wt.%; (d) 15 wt.% Sm2O3 in PEO/LiClO4 (90/10) electrolyte…….20 Figure 1-6 Least-square fit curves of 7Li-NMR of PEO/LiClO4 (90:10) with MCM-41 of different weight ratios: (i) 2% and (ii) 8% ………………………………………………………………21 Figure 1-7 Phase diagram of TiO2………………………………………23 Figure 1-8 Various structures of TiO2…………………………………..25 Figure 1-9 Relation between quantum effect and particle size…………27 Figure 2-1 XRD holder…………………………………………………36 Figure 2-2 Relationship between photon energy and typical material absorption…………………………………………………...43 Figure 2-3 The ranges of XANES and EXAFS……………………….46 Figure 2-4 Relationship between average free path and energy of photon electron……………………………………………46 Figure 2-5 Image for (a) single scattering path (b) multiple scattering path ………………………………………………………………48 Figure 2-6 Population of atomic spin in thermal equilibrium…………..51 Figure 2-7 Atomic precession behavior…………………………………51 Figure 2-8 Demonstration of mechanism of spin-lattice relaxation(T1) and spin-spin relaxation(T2)………………………………...54 Figure 2-9 Magic Angle Spining………………………………………..56 Figure 3-1 Flow chart for the synthesis of TiCl4-TiO2 nanoparticles…...62 Figure 3-2 Flow chart for the synthesis of SO42--TiCl4-TiO2 nanoparticles………………………………………………...64 Figure 3-3 Flow chart for the synthesis of Ti(OC2H5)4-TiO2 nanoparticles ………………………………………………………………66 Figure 3-4 Flow chart for the preparation of pure-SPE film……………67 Figure 3-5 Flow chart for the preparation of CPE………………………68 Figure 3-6 Flow chart for the preparation of mixing of TiO2 and LiClO4 ………………………………………………………………69 Figure 3-7 Flow chart for the preparation of polymer film……………..71 Figure 4-1 TGA of Ti(OC2H5)4-- TiO2………………………………......73 Figure 4-2 DTA of Ti(OC2H5)4-- TiO2………………………………......74 Figure 4-3 XRD pattern of TiCl4-TiO2 nanoparticles…………………...77 Figure 4-4 XRD pattern of SO42--TiCl4-TiO2 nanoparticles…………….77 Figure 4-5 XRD pattern of Ti(OC2H5)4-TiO2 nanoparticles…………….78 Figure 4-6 Ti-L edge for TiO2 thin film………………………………...78 Figure 4-7 Ti-L edge for TiCl4-TiO2 nanoparticles……………………..79 Figure 4-8 Ti-L edge for Ti(OC2H5)4-TiO2 nanoparticles........................79 Figure 4-9 Simulated XRD pattern of Ti(OC2H5)4-TiO2 nanoparticles…83 Figure 4-10 Simulated XRD pattern of TiCl4-TiO2 nanoparticles………83 Figure 4-11 SEM image of TiO2 (a)Ti(OC2H5)4-TiO2(b)TiCl4-TiO2........84 Figure 4-12 TEM image of TiO2 (a)Ti(OC2H5)4-TiO2 (b)TiCl4-TiO2.......85 Figure 4-13 DSC patterns of PEO doped with various ratio of LiClO4…89 Figure 4-14 DSC patterns of SPEs doped with various ratio of TiO2…...90 Figure 4-15 DSC patterns of SPEs doped with various ratio of TiO2…...91 Figure 4-16 DSC patterns of PEO doped with various ratio of TiO2……92 Figure 4-17 XRD pattern of PEO doped with various ratio of LiClO4…94 Figure 4-18 XRD pattern of SPEs doped with various ratio of TiO2…...94 Figure 4-19 XRD pattern of SPEs doped with various ratio of TiO2…...95 Figure 4-20 XRD pattern of PEO doped with various ratio of TiO2……95 Figure 4-21 SEM image of solid polymer electrolyte (5 K)……………98 Figure 4-22 SEM image of solid polymer electrolyte (20 K)…………..99 Figure 4-23 SEM image of solid polymer electrolyte (50 K)………….100 Figure 4-24 SEM image of composite polymer electrolyte (10 K)……101 Figure 4-25 SEM image of composite polymer electrolyte (50 K)……102 Figure 4-26 SEM image of composite polymer electrolyte (20 K)……103 Figure 4-27 SEM image of composite polymer electrolyte (50 K)……104 Figure 4-28 PEO IR spectrum…………………………………………105 Figure 4-29 IR spectra of PEO doped with various ratio of LiClO4…..108 Figure 4-30 Magnification IR spectra of Figure 4-29…………………108 Figure 4-31 Magnification IR spectra of Figure 4-29…………………109 Figure 4-32 Magnification IR spectra of Figure 4-29…………………109 Figure 4-33 Deconvolution result of ClO4-1 for PEO+5% LiClO4…….110 Figure 4-34 IR spectra of SPEs doped with various ratio of TiO2…….112 Figure 4-35 Magnification IR spectra of Figure 4-34…………………112 Figure 4-36 Magnification IR spectra of Figure 4-34…………………113 Figure 4-37 IR spectra for ClO4-1 deformation mode………………….113 Figure 4-38 IR spectra of SPEs doped with various ratio of TiO2……114 Figure 4-39 Magnification IR spectra of Figure 4-38………………...114 Figure 4-40 Magnification IR spectra of Figure 4-38…………………115 Figure 4-41 IR spectra for ClO4-1 deformation mode………………….115 Figure 4-42 Normalized O K-edge XAS spectra of the commercial TiO2 (Degussa) and Ti(OC2H5)4--TiO2powder…………………118 Figure 4-43 Normalized Ti L2&L3-edge XAS spectra of the commercial TiO2 (Degussa) and Ti(OC2H5)4--TiO2 powder…………..118 Figure 4-44 Normalized Ti L2&L3-edge XAS spectra of the Ti(OC2H5)4--TiO2 powder with different dosage of LiClO4 ……………………………………………………………119 Figure 4-45 Normalized O K-edge XAS spectra of PEO doped with various ratio of LiClO4…………………………………...119 Figure 4-46 Normalized O K-edge XAS spectra of PEO doped with various ratio of TiO2……………………………………..120 Figure 4-47 Normalized Cl L-edge XAS spectra of the LiClO4 mixed with PEO and TiO2………………………………………120 Figure 4-48 Effect of proton decoupling at various temperature (a) -50 oC (b) 30 oC (c) 70 oC…………………..125 Figure 4-49 The Li7 linewidth of PEO doped with various ratio of LiClO4 as function of temperature……………………………….126 Figure 4-50 The Li7 T1 measurement of PEO doped with various ratio of LiClO4 as function of temperature……………………….126 Figure 4-51 The Li7 relaxation time (1/T1) of PEO doped with various ratio of LiClO4 as function of temperature……………….127 Figure 4-52 NMR spectra of Li7/ MAS with 1-pulse experiment for PEO+10% LiClO4 at various temperatures………………130 Figure 4-53 NMR spectra of Li7/ MAS with 1-pulse experiment for PEO+10% LiClO4 at various temperatures………………130 Figure 4-54 NMR spectra of Li7/ MAS with 1-pulse experiment for PEO+10% LiClO4 at 30oC……………………………….131 Figure 4-55 NMR spectra of Li7/ MAS with 1-proton decoupling experiment for PEO+10% LiClO4 at 30oC………………131 Figure 4-56 NMR spectra of Li7/ MAS with 1-pulse experiment for PEO+10% LiClO4 +5% TiO2 at various temperatures…..134 Figure 4-57 NMR spectra of Li7/ MAS with 1-proton decoupling experiment for PEO+10% LiClO4 +5% TiO2 at various temperatures……………………………………………..135 Figure 4-58 NMR spectra of Li7/ MAS with 1-proton decoupling experiment for PEO+10% LiClO4 +10% TiO2 at various temperatures……………………………………………..135 Figure 4-59 NMR spectra of Li7/ MAS with 1-proton decoupling experiment for PEO+10% LiClO4 +20% TiO2 at various temperatures……………………………………………..136 Figure 4-60 NMR spectra of Li7/ MAS with 1-proton decoupling experiment for PEO+10% LiClO4 +20%TiO2 at 70oC…..136 Figure 4-61 types of interactions involved in the polymer electrolyte. (a)(b) PEO+LiClO4. (c) PEO+LiClO4+TiO2.....................151 Figure 4-62 Transport mechanism for the solid polymer electrolyte modified by TiO2…………………………………………152 表 目 錄 Table 4-1 Tg、Tm、Hf and χ values of Figure 4-13………………….89 Table 4-2 Tg、Tm、Hf and χ values of Figure 4-14………………….90 Table 4-3 Tg、Tm、Hf and χ values of Figure 4-15………………….91 Table 4-4 Tg、Tm、Hf and χ values of Figure 4-16………………….92 Table 4-5 Observed frequencies and assignments of infrared bands for PEO/LiClO4/TiO2………………….................................106 Table4-6 Deconvolution result of PEO doped with various ratio of LiClO4 ………………………………………………………………110 Table 4-7 The H1 linewidth of PEO doped with various ratio of LiClO4 as function of temperature…………………………………..127 Table 4-8 The NMR analysis data for PEO+10%LiClO4 by means of 1-proton decoupling experiment……………………………132 Table 5-1 Various amount of LiClO4 of PEO based SPE conductivity at room temperature……………………………………………143 Table 5-2 The NMR analysis data for PEO+10%LiClO4+5%TiO2 by means of 1-proton decoupling experiment………………….146 Table 5-3 The NMR analysis data for PEO+10%LiClO4+10%TiO2 by means of 1-proton decoupling experiment………………….147 Table 5-4 The NMR analysis data for PEO+10%LiClO4+20%TiO2 by means of 1-proton decoupling experiment………………….148 Table 5-5 Relationship among the interaction, Li-ion mobility and Li-ion concentration………………………………………………..153 符號表 R:為粒徑大小 me*:電子的有效質量 mh*:電洞的有效質量 ε:介電常數 EgQ:量子尺寸的能隙大小 Egbulk:塊材尺寸的能隙大小 θ:X-ray入射角 λ:入射光波長,1.5418 Å Hf:吸收熱焓,oC Tg:玻璃轉移溫度,oC Tm:熔點,oC χ:結晶化度,% κ:導電度,S/cm F:法拉第常數 zi:離子電荷 ui:離子移動率 ci:離子濃度 TLi:鋰離子傳送係數

    【1】 Hajek J., French Patent, 8, 10(1994).
    【2】 費定國,李桐進,「鋰電池專題報導」,能源資源與環境,第3卷,第1期79年2月,10頁。
    【3】 李桐進,「鋰一次電池發展」,材料與社會,第66期,81年6月,第54頁
    【4】 Owen B. B., Skarstad P. M., Untereker D. F., “Handbook of Batteries and Fuel Cells”, Linden D. Eds, Mcgraw-Hill Book Company: New York, pp12-13, 1984.
    【5】 Barghini M. C., Mastragostino M., Passerini S., Scrosati B., “ Electrochemical Properties of Polyethylene Oxide-Li[(CF3SO2)2N]-Gamma-LiAlO2 Composite Polymer Electrolytes”, J. Electrochem. Soc. 142, 2118, 1995.
    【6】 Croce F., Scrosati B., “Interfacial Phenomena in Polymer Electrolyte Cells: Lithium Passivation and Cycleability”, J. power sources., 43, 9, 1993.
    【7】 Linford R. G., “Application of Electroactive”, Polymer, Scrosati, B.: Chapman & Hall, London, pp1-28, 1993.
    【8】 Weston J. E., Steele B. C.,“Thermal history - conductivity relationship in lithium salt-poly (ethylene oxide) complex polymer electrolytes”, Solid State Ionics, 2, 347, 1981.
    【9】 S.S. Sekhon, Narinder Arora, S. A. Agnihotry, “PAN-based gel electrolyte with lithium salts”, Solid State Ionics 136–137 (2000) 1201–1204
    【10】 Armand M., Chabagno J. M., Duclot M. “Sceond Interational Meeting on Solid electrolytes”, St. Andrews, Scotland, Extended Abstracts(Sept. 1978)
    【11】 楊家諭;鄭程鴻;邱永城;「鋰離子二次電池電解質介紹」,工業材料110期,85年2月。
    【12】 D. E. Fenton, J. M. Parker, P. V. Wright,“Complexes of alkali metal ions with poly(ethylene oxide)”, Polymer, 14, 589, 1973.
    【13】 M. B. Armand, J. M. Chabagno, “Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts”, Solid State Ionics, 11, 91, 1983.
    【14】 Shriver D. F., Ratner M. A., Chem. Rev., 245, 4, 1988.
    【15】 F. Muller-plathe, W. F. van Gunsteren, “Computer simulation of a polymer electrolyte: Lithium iodide in amorphous poly(ethylene oxide)” J. Chem. Phys., 103, 4745, 1995.
    【16】 Hamaide T., Deore C. L., “Cationic conductivity and relaxation processes in solid polymer electrolytes with lithium perfluoroalkyl sulfonate or sulfonato end-capped poly(ethylene oxide) ” Polymer, 34, 5, 1038 ,1993.
    【17】 Armstrong R. D., “The electrochemical behavior of lithium iodine monohydrate and lithium bromide monohydrate”, Solid State Ionics, 5, 397, 1981.
    【18】 Robitaille C. D., Fauteux D., “Phase diagrams and conductivity characterization of some PEO-LiX electrolytes”, J. Electrochem. Soc., 133, 315, 1986.
    【19】 Baochen Wang, Li Feng., and Xinsheng Peng, “The impedance study of modified PEO polymer electrolyte”, Solid State Ionics, 48, 203 , 1991.
    【20】 Watanabe M., Togo M., Sanui K., Ogata N., Kobayashi T., Ohtaki Z., “Ionic Conductivity of Polymer Complexes Formed by Poly(ethylene succinate) and Lithium Perchlorate”, Macromolecules, 17, 2902 ,1984.
    【21】 Hodge I. M., Ingram M. D. and West A. R., J. Electroanal. Chem., 74, 125 ,1976.
    【22】 Schantz S., Torell L. M. and Stevens J. R.,“Raman and Brillouin scattering of LiClO4 complexed in Poly(Propylene-Glycol)”, J. Appl. Phys., 64, 4, 2038 ,1988.
    【23】 Venkatasetty H. V., J. Electrochem. Soc., 245 ,1975.
    【24】 Xu Meizhen, Eyring Edward M., Petrucci Sergio, “Anion solvation effects in polymer-electrolytes: NaSCN and LiSCN in PEO-400 and in PEG-400”, Solid State Ionics, 83, 293 , 1996.
    【25】 Scrosati B., Croce F., and Persi L., “Impedance Spectroscopy Study of PEO-Based Nanocomposite Polymer Electrolytes”, J. Electrochem. Soc., 147 (5) 1718-1721 (2000)
    【26】 Wieczorek W., Stevens J. R., Florjanczyk Z., “Composite polyether based solid electrolytes. The Lewis acid-base approach”, Solid State Ionics, 85, 67. 1996.
    【27】 Nilson C. M., Bonagamba T. J., Aegerter M. A. ,“NMR Study of Ion-Conducting Organic-Inorganic Nanocomposites Poly(ethylene glycol)-Silica-LiClO4”, Macromolecules, 33, 1280, 2000.
    【28】 Croce F., Persi L., Ronci F., Scrosati B., “Nanocomposite polymer electrolytes and their impact on the lithium battery technology”, Solid State Ionics 135, 47, 2000.
    【29】 Congxiao Wang, Yongyao Xia, Kenichi Koumoto, and Tetsuo Sakai,“All Solid-State Li/LixMnO2 Polymer Battery Using Ceramic Modified Polymer Electrolytes”, J. Electrochem. Soc., 149(8) A967-A972 (2002)
    【30】 Wang C., Xia Y., Koumoto K., Sakai T., “All Solid-State Li/LixMnO2 Polymer Battery Using Ceramic Modified Polymer Electrolytes”, J. Electrochem. Soc., 149, 967, 2002.
    【31】 Itoh T., Ichikawa Y., Uno T., Kubo M., Yamamoto O., “Thermal, electrical, and mechanical properties of composite polymer electrolytes based on cross-linked poly(ethylene oxide-co-propylene oxide) and ceramic filler”, Solid State Ionics, 156, 393-399, 2003.
    【32】 洪傳獻,Chemistry, 57, 175, 1999.
    【33】 Kim C. S., Oh S. M., “Importance of donor number in determining solvating ability of polymers and transport properties in gel-type polymer electrolytes”, Electrochim. Acta, 45, 2101, 2000.
    【34】 Watanabe M., Kanba M., Nagaoka K., Shinohara I., “Ionic Conductivity of Hybrid Films Based on Polyacrylonitrile and Their Battery Application”, J. Appl. Polym. Sci., 27, 4191. , 1982.
    【35】 Watanabe M., Kanba M., Nagaoka K., Shinohara I., “Ionic Conductivity of Hybrid Films Composed of Polyacrylonitrile, Ethylene Carbonate, and LiClO4”, J. Polym. Sci.,: Polymer Phy. Ed., 21, 939, 1983.
    【36】 Abraham K. M., Alamgir M., “Li+-Conductive Solid Polymer Electrolytes With Liquid-Like Conductivity”, J. Electrochem. Soc., 137, 1657. , 1990.
    【37】 Murata K., Izuchi S., Yoshihisa Y., “An overview of the research and development of solid polymer electrolyte batteries”, Electrochim. Acta 45, 1501, 2000.
    【38】 Xue R., Huang H., Menetrier M., Chen L., “Impedance study for the interface and whole battery with PAN-based polymer electrolyte”, J. Power Sources, 44, 431, 1993.
    【39】 Choe H. S., Carroll B. G., Pasquariello D. M., Abraham K. M., “Characterization of Some Polyacrylonitrile-Based Electrolytes”, Chem. Mater. 9, 369, 1997
    【40】 Croce F., Brown S. D., Greebaum S. G., Slane S. M., Solomon M., “ 7Li NMR and Ionic Conductivity Studies of Gel Electrolytes Based on Poly(acrylonitrile)”, Chem. Mater. 5 ,1, 1995.
    【41】 Tsutsumi H., Matsuo A., Onimura K., Oishi T., “Conductivity Enhancement of a Polyacrylonitrile-Based Polymer Electrolyte Containing Cascade Nitrile as a Plasticiz”. Electrochem. Solid-State Lett. 1 , 244, 1998.
    【42】 L. R. A. K. Bandara, M. A. K. L. Dissanayake and B. -E. Mellander , “Ionic conductivity of plasticized (PEO)-LiCF3SO3 electrolytes”, Mellander B. E., Electrochim. Acta 43 1447, 1998.
    【43】 Ostrovskii D., Torell L. M., Appetecchi G. B., Scrosati B., “An electrochemical and Raman spectroscopical study of gel polymer electrolytes for lithium batteries”, Solid State Ionics 106 19 , 1998.
    【44】 Appetecchi G. B., Croce F., Scrosati B., “High-performance electrolyte membranes for plastic lithium batteries”, J. Power Sources 66 77, 1997.
    【45】 Sung H. Y., Wang Y. Y., Wan C. C., “Preparation and Characterization of Poly(vinyl chloride-co-vinyl acetate)-Based Gel Electrolytes for Li-Ion Batteries”, J. Electrochem. Soc. 145 1207, 1998.
    【46】 Venugopal G., Reicher V. R., Zhang J., US Patent 5, 27, 1996.
    【47】 Voice A. M., Southall J. P., Rogers V., Mattews K. H., Davies G. R., McIntyre J. E., Ward I. M., “Thermoreversible polymer gel electrolytes”, Polymer 35 3363, 1994.
    【48】 Croce F., Appetecchi G. B., Slane S., Salomon M., Tavarez M., Arumugam S., Wang Y., Greenbaum S. G., “Impedance and Li7 NMR studies of polymer electrolytes based on poly(vinylidene fluoride)”, Solid State Ionics 86-88 307, 1996.
    【49】 Kono M., Hayashi E., Watanabe M., “Preparation, Mechanical Properties, and Electrochemical Characterization of Polymer Gel Electrolytes Prepared from Poly(alkylene oxide) Macromonomers”, J. Electrochem. Soc. 146 1626, 1999.
    【50】 Passiniemi P., Takkumaki S., Kankare J., Syrjama M., “Ionic conduction in ethylene oxide-propylene oxide copolymers containing LiClO4”, Solid State Ionics, 29-30, 1001, 1988.
    【51】 Scrosati B., “Electrode and Electrolyte Materials For Polymer-Based Lithium Batteries”, J. Electrochem. Soc., 136, 2774, 1989.
    【52】 Albinsson I., Jacobsson P., Mellander B. N., Stevens, J. R., “Ion association effects and ionic conduction in polyalkalene modified polydimethylsiloxanes”, Solid State Ionics, 53-56, 1044, 1992.
    【53】 Matoba Y., Ikeda Y., Kohjiya S., “Ionic conductivity and mechanical properties of polymer networks prepared from high molecular weight branched poly(oxylethylene)s”, Solid State Ionics 147, 403, 2002.
    【54】 Ding L. M., Shi U. J., Yang C. Z., Synth. Met. 87(2)(1997)157.
    【55】 Nafshun R. L., Lerner M. M., Hamel N. N., Nixon P. G., Gard G. L., “Ion Conductivity and Scanning Calorimetry of Poly(ethylene oxide) Complexes of the Plasticizing Salt LiSO3CF2SF5”, J. Electrochem. Soc., 142, L153, 1995.
    【56】 Abraham K. M., Koch V. R., Blakley T. J., “Inorganic-Organic Composite Solid Polymer Electrolytes”, J. Electrochem. Soc., 147, 1251, 2000.
    【57】 Blonsky P. M., Shriver D. F., Austin P., Allcock H. R., “Polyphosphazene solid electrolytes” , J. Am. Chem. Soc., 106, 6854, 1984.
    【58】 Walker Jr. C. W., Salomon M. ,“Polyphosphazene-Polyolefin Mixed Polymer Electrolytes: I. Conductivity and Thrmal Studies of MEEP/PEO-(LiX)n”, J. Electrochem. Soc., 136, 3576, 1989.
    【59】 Lee H. S., Wang X. Q., Mcbreen J., Xu Z. S., Skotheim T. A., Okamoto Y., “Ionic Conductivity of a Polymer Electrolyte with Modified Carbonate as a Plasticizer for Poly(ethylene oxide)”, J. Electrochem. Soc., 141, 886, 1994.
    【60】 Abraham K. M., Alamgir M., Hoffman D. K., “Polymer Electrolytes Reinforced by Celgard Membranes”, J. Electrochem. Soc. 142, 683, 1995.
    【61】 Binod K., Lawarence G. S.,“Polymer-ceramic composite electrolytes”, J. Power Sources 52, 261-268. 1994.
    【62】 Quartarone E., Mustarelli P., Magistris A., “PEO-based composite polymer electrolytes”, Solid State Ionics, , 10, 1. 1998.
    【63】 Lisong H., Sakka S., “Preparation and spectroscopic studies of alkoxide-derived V2O5---GeO2 sols and coatings”, J. Non-Cryst. Solids, 112,424. 1989.
    【64】 La Serra E. R., Charbouillot Y., Baudry P., Aegerter M. A., “Preparation and characterization of thin films of TiO2---PbO and TiO2---Bi2O3 compositions”,J. Non-Cryst. Solids, 121, 323, 1990.
    【65】 Hermann P. P., Wildmann D., IEEE, J. Quantum Electron, 19, 1735, 1983.
    【66】 Stamm Ch., Lukosz W., Sensors and Actuators B: Chem., 11, 177, 1993.
    【67】 Ji K. S., Moon H. S., Kim J. W., Kwang J. W., Park J. W., “Role of functional nano-sized inorganic fillers in poly(ethylene) oxide-based polymer electrolytes”, J. Power Sources, 5441, 1, 2003.
    【68】 Persi L., Croce F., Scrosati B., Plichta E., Hendrickson M. A., “Poly(ethylene oxide)-Based, Nanocomposite Electrolytes as Improved Separators for Rechargeable Lithium Polymer Batteries The Li/LiMn3O6 Case”, J. Electrochem. Soc. 149, 212, 2002.
    【69】 Croce F., Appetecchi G. B., Persi L. & Scrosati B. , “Nanocomposite polymer electrolyte for lithium batteries”, Nature Vol 394 30 July 1998
    【70】 Croce F., Persi L., Scrosati B., Serraino-Fiory F., Plichta E. , Hendrickson M.A. “Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes”, Electrochim. Acta 46 (2001) 2457–2461
    【71】 Binod Kumar, Stanley J. Rodrigues, and Lawrence G. Scanlonb,“Ionic Conductivty of Polymer-Ceramic Composites” , J. Electrochem. Soc., 148(10) A1191-A1195 (2001)
    【72】 Peter P. Chu, M. Jaipal Reddy“Sm2O3 composite PEO solid polymer electrolyte” , J. Power Sources 115 (2003) 288–294
    【73】 Peter P. Chu, M. Jaipal Reddy, H.M. Kao“Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li” , Solid State Ionics 156 (2003) 141– 153
    【74】 Huan-Ming Xiong, Xu Zhao, and Jie-Sheng Chen “New Polymer-Inorganic Nanocomposites: PEO-ZnO and PEO-ZnO-LiClO4 Films” , J. Phys. Chem. B 2001, 105, 10169-10174
    【75】 A. S. Best, J. Adebahr, P. Jacobsson, D. R. MacFarlane, and M. Forsyth “Microscopic Interactions in Nanocomposite Electrolytes” Macromolecules 2001, 34, 4549-4555
    【76】 Wendjso, Lindgren J., Paluszkiewicz C.,“Structure,
    dynamics and morphology in the system M(CF3SO3)2 PEOn
    for M = Zn and Pb”, Electrochim. Acta. 1992, 37, 1689-1693.
    【77】 Perelygin, I. S.; Mikhailov, G. P. Translated from Zh. Prikl.
    Spektrosk. 1988, 49, 65-70.
    【78】 Phase Diagrams for Ceramists Figure 4150~4999, The American Ceramic Society, Inc., 76 , 1975.
    【79】 Koelsch M., Cassaignon S., Guillemoles J. F., Jolivet J. P., “Comparison of optical and electrochemical properties of anatase andbrookite TiO synthesized by the sol–gel method”, Thin Solid Films, 403 –404, (2002), 312–319.
    【80】 Pottier A., Chaneac C., Tronc E., Mazerolles L. and Jolivet J. P., “Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 instrongly acidic aqueous media”, J. Mater. Chem., 2001, 11, 1116–1121.
    【81】 Shang–Di Mo and Ching W. Y., “Electronic and optical properties of three phases of titanium dioxide: Rutile, Anatase, and Brookite”, Phys. Rev. B 51, 13023–13032 (1995).
    【82】 Linsebigler A. L., Lu G., and John T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chem. Rev., 95, 735, 1995.
    【83】 Penn R. L., Banfield J. F.,“Formation of rutile nuclei atanatase {112} twin interfaces and the phase transformation mechanismin nanocrystalline titania” American Mineralogist, 84, 871 , 1999.
    【84】 Burdett J. K., Hughbanks T., Miller G. J., Richardson J. W., Smith J. V., “Structural-Electronic Relationships in Inorganic Solids:Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K”, J. Am. Chem. Soc., 109, 3639 , 1987.
    【85】 Park N.G., Schlichthorl G., Lagemaat Van de, Cheong H. M., Mascarenhas A., Frank A. J., “Dye-Sensitized TiO2 Solar Cells: Structural and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed from the Hydrolysis of TiCl4”, J. Phys Chem. B, 103, 3308. 1999.
    【86】 So W. W., Park S. B., Kim K. J., Moon S. J., “Phase transformation behavior at low temperature in hydrothermal treatment of stable and unstable titanium sol”, J. Colloid and Interface Sci., 191, 398. 1997.
    【87】 Thieme M., Schuth F., “Preparation of a mesoporous high surface area titanium oxo phosphate via a non-ionic surfactant route”, Microporous Mesoporous Mater, 27, 193. , 1999.
    【88】 PCS size training course, Malvern Seminar, 1999.
    【89】 Wu N. L., Wang S. Y., and Rusakova I. A., “Inhibition of Crystallite Growth in the Sol-Gel Synthesis of Nanocrystalline Metal Oxide”, Science, 285, 1375(1999).
    【90】 林正豐,「奈米二氧化鈦之製備及活性測定」,台灣大學化學系碩士論文,90年6月。
    【91】 Y. Murakami, T. Matsumoto, and Y. Takasu, “Salt Catalyst containing Basic Anions and Acidic Cations for the Sol-Gel Process of Titanium Alkoxide: Controlling the Kinetics and Dimensionality of the Resultant Titanium Oxide”, J. PHYs. Chem. B,103,1836(1999)
    【92】 Scrosati B., Croce F., and Persi L., “Impedance Spectroscopy Study of PEO-Based Nanocomposite Polymer Electrolytes”, J. Electrochem. Soc., 147 (5) 1718-1721 (2000).
    【93】 黃雅鈴,「奈米二氧化鈦-固態複合高分子電解質」,國立中央大學化學系碩士論文,90年6月
    【94】 洪哲倫,「鋰離子二次電池奈米複合式固態高分子電解質特性之研究」,台灣科技大學化工系碩士論文,92年7月
    【95】 林允智,「以固態核磁共振儀研究奈米二氧化鈦改質固態高分子電解質中鋰離子之傳導機制」,台灣科技大學化工系碩士論文,93年7月
    【96】 “X-Ray Absorption: Principles, Application, Techniques of EXAFS, SEXAFS and XANES’’, edited by D. C. Koningsberger, and R. Prins, Chem. Analysis Vol.92(Wiley 1988)
    【97】 D. E. Sayers, E. A. Stern, and F. W. Lytle, Phys. Rev. Lett. 27, 1024 (1971)
    【98】 “NEXAFS Spectroscopy’’ , edited by Joachim Stohr (Springer-verlag 1991)
    【99】 E. A. Stern, M. New Newville, B. Ravel, Y. Yaceby, and D. Haskel, Phys. B. 208&209, 117(1995)
    【100】 “EXAFS and Near Edge structure’’, edited by A. Bianconi, L. Incoccia and S. Stipcich (Springer-Verlay 1983)
    【101】 “Synchrontron Radiation Research’’ , edited by H. Winick, S. Doniach (1980).
    【102】 Agne`s Pottier, Corinne Chane, Elisabeth Tronc, Le´o Mazerolles and Jean-Pierre Jolivet “Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media” , J. Mater. Chem., 2001, 11, 1116–1121
    【103】 Qinghong Zhang, Lian Gao, Jingkun Guo “Effect of hydrolysis conditions on morphology and crystallization of nanosized TiO2 powder”, Journal of the European Ceramic Society 20 (2000) 2153±2158
    【104】 Diedrich A. Schmidt(1), Scott A. Chambers(2), Marjorie A. Olmstead(1), “Epitaxial Growth and Properties of Nanoscale Oxides forSpintronics”, Department of Physics, University of Washington, Seattle, WA(2) Fundamental Science Division, PNNL, Richland, WA
    【105】 Hsien-Wei Chen, Chang-Hung Jiang, Hew-Der Wu, Feng-Chih Chang, “Hydrogen Bonding Effect on the Poly(ethyleneoxide), Phenolic Resin, and Lithium Perchlorate–Based Solid-State Electrolyte”, Journal of Applied Polymer Science, Vol. 91, 1207–1216 (2004)
    【106】 Shan Wong and David B. Zax, “What do NMR linewidths tell us? Dynamic of alkali cations in a PEO-based nanocomposite polymer electrolyte”, Electrochimica Acta. Vol. 42. Nos 23-24, pp. 3513-3518, 1997
    【107】 M. Forsyth, D.R. MacFarlane, A. Best, J. Adebahr, P. Jacobsson, A.J. Hill, “The effect of nano-particle TiO2 fillers on structure and transport in polymer electrolytes”,Solid State Ionics 147 (2002) 203– 211
    【108】 J. Adebahr, A. S. Best, N. Byrne, P. Jacobsson, D. R. MacFarlane and M. Forsyth, “Ion transport in polymer electrolytes containing nanoparticulate TiO2 : The influence of polymer morphology”,Phys. Chem. Chem. Phys., 2003, 5, 720–725
    【109】 S H Chung, Y Wang, S G Greenbaum, M Marcinek, L Persi, F Croce, W Wieczorek and B Scrosati, “Nuclear magnetic resonance studies of nanocomposite polymer electrolyte”, J. Phys.:Condens. Matter 13(2001) 11763-11768
    【110】 F. Croce, R. Curini, A. Martinelli, L. Persi, F. Ronci, and B. Scrosati, “Physical and Chemical Properties of Nanocomposite Polymer Electrolytes”,J. Phys. Chem. B 1999, 103, 10632-10638

    QR CODE