簡易檢索 / 詳目顯示

研究生: 張佑誠
Yu-Cheng Chang
論文名稱: CeO2@TiO2中空核殼結構合成及其光觸媒之研究
Study of Photocatalyst and Synthesis of CeO2@TiO2 Hollow Core-Shell Structure
指導教授: 陳詩芸
Shi-Yun Chen
口試委員: 宋振銘
郭東昊
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 104
中文關鍵詞: 光觸媒核殼結構中空球CeO2@TiO2
外文關鍵詞: Photocatalyst, Core-Shell Structure, Hollow Sphere, CeO2@TiO2
相關次數: 點閱:245下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為兩部份,在第一部份,我們以噴霧熱裂解法製作中空二氧化鈰球,並利用溶膠凝膠法將二氧化鈦披覆在中空二氧化鈰球表面,所合成的核殼結構,以X光繞射儀、穿透式電子顯微鏡、X光吸收光譜分別進行結構、形貌及電子結構之分析;以紫外光-可見光光譜及光激螢光光譜探討核殼結構的光學性質;光觸媒效果則是經由與10-5 M的亞甲基藍水溶液混合後,分別利用紫外光和可見光進行照射測試。實驗結果顯示,此製程可成功將二氧化鈦披覆在二氧化鈰中空球上,殼層厚度可經由改變二氧化鈦前驅物濃度達到控制。形成中空CeO2@TiO2核殼結構後,CeO2中的Ce3+ 含量上升,TiO2中的Ti3+含量則下降,推測原因為CeO2與TiO2間發生電荷轉移現象。在光學特性方面,與未形成核殼結構的TiO2相比,中空CeO2@TiO2核殼結構的吸收範圍較大,且光電子電洞對壽命較長。隨著TiO2殼層厚度的增加,紫外光照射下的光觸媒效果越好;但以可見光照射時,表面的TiO2殼層太厚將會影響入射光能量,導致光催化效果變差。在第二部分,我們利用退火將CeO2球表面進行改質,以促進CeO2與TiO2間的交互作用。經由比較不同的退火氣氛,包括氧化及還原氣氛,發現CeO2與TiO2間的電荷轉移現象確實可經由調整CeO2球表面狀態而增強,進一步提升樣品之光學性能。


    This study is divided into two parts. In the first part, we made hollow ceria spheres by spray pyrolysis, and coated the surface of the hollow spheres with titanium dioxide by the sol-gel method. Crystallization, morphology and electronic structure was investigated by using X-ray diffractometer, transmission electron microscope, and X-ray absorption spectroscopy. Optical properties of core-shell structure was studied by ultraviolet-visible light spectrum and photo-induced fluorescence spectrum. The photocatalyst property is determined by mixing with 10-5 M Methylene blue (MB) solution, and then irradiated with ultraviolet light and visible light. It is demonstrated that hollow CeO2@TiO2 core-shell structure was successfully synthesized. The shell thickness can be controlled by changing the concentration of the titanium dioxide precursor. After the formation of core-shell structure, Ce3+ concentration in CeO2 increases, while the Ti3+ concentration in TiO2 decreases, which was attributed to the charge transfer between CeO2 and TiO2. In addition, the hollow CeO2@TiO2 core-shell structure has a wide absorption range and a long lifetime for photoelectron holes. The photocatalyst performance was enhanced with increasing the TiO2 shell thickness. In the second part, to promote the interaction between CeO2 and TiO2, the surface of CeO2 spheres was modified by tuning the annealing atmospheres, including oxidation and reduction atmospheres. It is found that the degree of charge transfer between CeO2 and TiO2 was enhanced by adjusting the surface state of CeO2 spheres, which result in the improvement of the optical properties.

    目 錄 中文 摘要 I Abstract III 誌 謝 V 目 錄 VI 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 第二章 文獻回顧與理論介紹 4 2.1 光觸媒 4 2.1.1 光觸媒原理與簡介 4 2.1.2 光觸媒反應機制[37] 6 2.2 材料性質與研究背景 7 2.2.1 二氧化鈦改質在光觸媒之效應 7 2.2.2 二氧化鈰結構與性質 18 2.2.3 二氧化鈦結構與性質 20 2.3 二氧化鈰@二氧化鈦製備方式 24 2.3.1二氧化鈰之製備 24 2.3.2二氧化鈦之製備 27 第三章 實驗方法 30 3.1 實驗流程 30 3.1.1 中空二氧化鈰之製備 31 3.1.2 中空二氧化鈰包覆二氧化鈦之製備 32 3.1.3 不同二氧化鈦殼層厚度之製備 33 3.1.4 不同氣氛退火之中空二氧化鈰包覆二氧化鈦 33 3.2 性質分析 34 3.2.1 X光繞射分析 34 3.2.2 穿透式電子顯微鏡 35 3.2.3 X光吸收光譜 36 3.2.4 紫外光/可見光吸收光譜 41 3.2.5 光激螢光光譜 43 3.2.6 光觸媒性質 44 第四章 結果與討論 45 4.1 以噴霧裂解法進行二氧化鈰中空球之合成及其微結構分析 45 4.2 CeO2中空球表面包覆TiO2之結果 47 4.2.1  XRD分析 47 4.2.2  TEM分析 48 4.3 TiO2披覆層厚度之調整 51 4.3.1 XRD分析 51 4.3.2 TEM分析 52 4.3.3 XAS分析 54 4.3.4 UV分析 62 4.3.5 PL分析 63 4.3.6 光催化降解分析 64 4.3.7 綜合討論 66 4.4 以不同氣氛對CeO2中空球熱處理後表面包覆TiO2之結果 71 4.4.1 XRD分析 72 4.4.2 TEM分析 73 4.4.3 XAS分析 75 4.4.4 UV分析 82 4.4.5 PL分析 83 4.4.6 光催化降解分析 84 4.4.7 綜合討論 85 第五章 結論 86 第六章 參考文獻 87

    [1] P. Dong, Y. Wang, L. Guo, B. Liu, S. Xin, J. Zhang, Y. Shi, W. Zeng, S.J.N. Yin, A facile one-step solvothermal synthesis of graphene/rod-shaped TiO 2 nanocomposite and its improved photocatalytic activity, 4(15) (2012) 4641-4649.
    [2] N. Moustakas, F. Katsaros, A. Kontos, G.E. Romanos, D. Dionysiou, P.J.C.T. Falaras, Visible light active TiO2 photocatalytic filtration membranes with improved permeability and low energy consumption, 224 (2014) 56-69.
    [3] J.-G. Li, T. Ishigaki, X.J.T.J.o.P.C.C. Sun, Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties, 111(13) (2007) 4969-4976.
    [4] X. Yu, L. Huang, Y. Wei, J. Zhang, Z. Zhao, W. Dai, B.J.M.R.B. Yao, Controllable preparation, characterization and performance of Cu2O thin film and photocatalytic degradation of methylene blue using response surface methodology, 64 (2015) 410-417.
    [5] A. Fujishima, K.J.n. Honda, Electrochemical photolysis of water at a semiconductor electrode, 238(5358) (1972) 37-38.
    [6] A. Fujishima, T.N. Rao, D.A.J.J.o.p. Tryk, p.C.P. reviews, Titanium dioxide photocatalysis, 1(1) (2000) 1-21.
    [7] A. Fujishima, X. Zhang, D.A.J.S.s.r. Tryk, TiO2 photocatalysis and related surface phenomena, 63(12) (2008) 515-582.
    [8] S. Banerjee, S.C. Pillai, P. Falaras, K.E. O’shea, J.A. Byrne, D.D.J.T.j.o.p.c.l. Dionysiou, New insights into the mechanism of visible light photocatalysis, 5(15) (2014) 2543-2554.
    [9] K. Vinodgopal, P.V.J.E.s. Kamat, technology, Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films, 29(3) (1995) 841-845.
    [10] R. Daghrir, P. Drogui, D.J.I. Robert, E.C. Research, Modified TiO2 for environmental photocatalytic applications: a review, 52(10) (2013) 3581-3599.
    [11] M.-H. Yang, P.-C. Chen, M.-C. Tsai, T.-T. Chen, I.-C. Chang, H.-T. Chiu, C.-Y.J.C. Lee, Alkali metal ion assisted synthesis of faceted anatase TiO 2, 15(15) (2013) 2966-2971.
    [12] J. Zhao, X.-X. Zou, J. Su, P.-P. Wang, L.-J. Zhou, G.-D.J.D.T. Li, Synthesis and photocatalytic activity of porous anatase TiO 2 microspheres composed of {010}-faceted nanobelts, 42(13) (2013) 4365-4368.
    [13] S. Ikeda, N. Sugiyama, B. Pal, G. Marcí, L. Palmisano, H. Noguchi, K. Uosaki, B.J.P.c.c.p. Ohtani, Photocatalytic activity of transition-metal-loaded titanium (IV) oxide powders suspended in aqueous solutions: Correlation with electron–hole recombination kinetics, 3(2) (2001) 267-273.
    [14] M.I.J.A.C.B.E. Litter, Heterogeneous photocatalysis: transition metal ions in photocatalytic systems, 23(2-3) (1999) 89-114.
    [15] V. Binas, K. Sambani, T. Maggos, A. Katsanaki, G.J.A.C.B.E. Kiriakidis, Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light, 113 (2012) 79-86.
    [16] D. Chen, Z. Jiang, J. Geng, Q. Wang, D.J.I. Yang, e.c. research, Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity, 46(9) (2007) 2741-2746.
    [17] R.G. Chaudhuri, S.J.D.T. Paria, Visible light induced photocatalytic activity of sulfur doped hollow TiO 2 nanoparticles, synthesized via a novel route, 43(14) (2014) 5526-5534.
    [18] S. Liu, N. Zhang, Z.-R. Tang, Y.-J.J.A.a.m. Xu, interfaces, Synthesis of one-dimensional CdS@ TiO2 core–shell nanocomposites photocatalyst for selective redox: the dual role of TiO2 shell, 4(11) (2012) 6378-6385.
    [19] Z. Dong, M. Wu, J. Wu, Y. Ma, Z.J.D.T. Ma, In situ synthesis of TiO 2/SnO x–Au ternary heterostructures effectively promoting visible-light photocatalysis, 44(26) (2015) 11901-11910.
    [20] H.-S. Wu, L.-D. Sun, H.-P. Zhou, C.-H.J.N. Yan, Novel TiO 2–Pt@ SiO 2 nanocomposites with high photocatalytic activity, 4(10) (2012) 3242-3247.
    [21] J. Yang, J. Wang, X. Li, D. Wang, H.J.C.S. Song, Technology, Synthesis of urchin-like Fe 3 O 4@ SiO 2@ ZnO/CdS core–shell microspheres for the repeated photocatalytic degradation of rhodamine B under visible light, 6(12) (2016) 4525-4534.
    [22] J. Xu, H. Sang, X. Wang, K.J.D.T. Wang, Facile synthesis and photocatalytic properties of ZnO core/ZnS–CdS solid solution shell nanorods grown vertically on reductive graphene oxide, 44(20) (2015) 9528-9537.
    [23] W. Li, J. Yang, Z. Wu, J. Wang, B. Li, S. Feng, Y. Deng, F. Zhang, D.J.J.o.t.A.C.S. Zhao, A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core–shell structures, 134(29) (2012) 11864-11867.
    [24] M. Ye, Q. Zhang, Y. Hu, J. Ge, Z. Lu, L. He, Z. Chen, Y.J.C.A.E.J. Yin, Magnetically recoverable core–shell nanocomposites with enhanced photocatalytic activity, 16(21) (2010) 6243-6250.
    [25] H. Zhang, M. Ying, R. Gao, L. Hu, Z. Jiao, X.J.R.A. Zhu, Carbon-mediated fabrication of core–shell structured SnO 2@ TiO 2 nanocomposites with excellent photocatalytic performance, 5(72) (2015) 58439-58448.
    [26] L. Zhang, J. Zhang, H. Jiu, X. Zhang, M.J.J.o.M.S. Xu, Preparation of hollow core/shell CeO 2@ TiO 2 with enhanced photocatalytic performance, 50(15) (2015) 5228-5237.
    [27] F. Chen, P. Ho, R. Ran, W. Chen, Z. Si, X. Wu, D. Weng, Z. Huang, C.J.J.o.A. Lee, Compounds, Synergistic effect of CeO2 modified TiO2 photocatalyst on the enhancement of visible light photocatalytic performance, 714 (2017) 560-566.
    [28] B. Yuan, Y. Long, L. Wu, K. Liang, H. Wen, S. Luo, H. Huo, H. Yang, J.J.C.S. Ma, Technology, TiO 2@ h-CeO 2: a composite yolk–shell microsphere with enhanced photodegradation activity, 6(16) (2016) 6396-6405.
    [29] Y. Liu, T. Li, W. Chen, Y. Guo, L. Liu, H.J.R.A. Guo, Hierarchical hollow TiO 2@ CeO 2 nanocube heterostructures for photocatalytic detoxification of cyanide, 5(16) (2015) 11733-11737.
    [30] J. Cai, X. Wu, S. Li, F.J.A.C.B.E. Zheng, Controllable location of Au nanoparticles as cocatalyst onto TiO2@ CeO2 nanocomposite hollow spheres for enhancing photocatalytic activity, 201 (2017) 12-21.
    [31] M. Zeng, Y. Li, M. Mao, J. Bai, L. Ren, X.J.A.C. Zhao, Synergetic effect between photocatalysis on TiO2 and thermocatalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites, 5(6) (2015) 3278-3286.
    [32] G. Li, D. Zhang, C.Y.J.P.C.C.P. Jimmy, Thermally stable ordered mesoporous CeO 2/TiO 2 visible-light photocatalysts, 11(19) (2009) 3775-3782.
    [33] M. Tahir, N.S.J.A.C.A.G. Amin, Photocatalytic CO2 reduction and kinetic study over In/TiO2 nanoparticles supported microchannel monolith photoreactor, 467 (2013) 483-496.
    [34] L. Wang, J. Ding, Y. Chai, Q. Liu, J. Ren, X. Liu, W.-L.J.D.T. Dai, CeO 2 nanorod/gC 3 N 4/N-rGO composite: enhanced visible-light-driven photocatalytic performance and the role of N-rGO as electronic transfer media, 44(24) (2015) 11223-11234.
    [35] T. Yu, X. Tan, L.J.J.o.h.m. Zhao, RETRACTED: Characterization and mechanistic analysis of the visible light response of cerium and nitrogen co-doped TiO2 nano-photocatalyst synthesized using a one-step technique, 176(1-3) (2010) 829-835.
    [36] E.A. Kozlova, T.P. Korobkina, A.V.J.i.j.o.h.e. Vorontsov, Overall water splitting over Pt/TiO2 catalyst with Ce3+/Ce4+ shuttle charge transfer system, 34(1) (2009) 138-146.
    [37] A.O. Ibhadon, P.J.C. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications, 3(1) (2013) 189-218.
    [38] A.L. Linsebigler, G. Lu, J.T.J.C.r. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, 95(3) (1995) 735-758.
    [39] J. Xie, D. Jiang, M. Chen, D. Li, J. Zhu, X. Lü, C.J.C. Yan, S.A. Physicochemical, E. Aspects, Preparation and characterization of monodisperse Ce-doped TiO2 microspheres with visible light photocatalytic activity, 372(1-3) (2010) 107-114.
    [40] Y. Liu, P. Fang, Y. Cheng, Y. Gao, F. Chen, Z. Liu, Y.J.C.e.j. Dai, Study on enhanced photocatalytic performance of cerium doped TiO2-based nanosheets, 219 (2013) 478-485.
    [41] G.B. Vieira, H.J. José, M. Peterson, V.Z. Baldissarelli, P. Alvarez, R.d.F.P.M.J.J.o.P. Moreira, P.A. Chemistry, CeO2/TiO2 nanostructures enhance adsorption and photocatalytic degradation of organic compounds in aqueous suspension, 353 (2018) 325-336.
    [42] J. Tian, Y. Sang, Z. Zhao, W. Zhou, D. Wang, X. Kang, H. Liu, J. Wang, S. Chen, H.J.S. Cai, Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures, 9(22) (2013) 3864-3872.
    [43] M.J. Muñoz-Batista, M.N. Gómez-Cerezo, A. Kubacka, D. Tudela, M.J.A.C. Fernández-García, Role of interface contact in CeO2–TiO2 photocatalytic composite materials, 4(1) (2014) 63-72.
    [44] X. Song, C. Gong, D.J.J.-C.C.S. Li, Study on structural characteristic and mechanical property of coal gangue in activation process, 32(3) (2004) 358-363.
    [45] P. Patsalas, S. Logothetidis, L. Sygellou, S.J.P.R.B. Kennou, Structure-dependent electronic properties of nanocrystalline cerium oxide films, 68(3) (2003) 035104.
    [46] H. Yahiro, Y. Eguchi, K. Eguchi, H.J.J.o.a.e. Arai, Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure, 18(4) (1988) 527-531.
    [47] Y. Liu, Z. Lockman, A. Aziz, J.J.J.o.P.C.M. MacManus-Driscoll, Size dependent ferromagnetism in cerium oxide (CeO2) nanostructures independent of oxygen vacancies, 20(16) (2008) 165201.
    [48] S. Chikazumi, C.D. Graham, Physics of Ferromagnetism 2e, Oxford University Press on Demand2009.
    [49] D.A. Hanaor, C.C.J.J.o.M.s. Sorrell, Review of the anatase to rutile phase transformation, 46(4) (2011) 855-874.
    [50] M.K. Nowotny, L.R. Sheppard, T. Bak, J.J.T.J.o.P.C.C. Nowotny, Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts, 112(14) (2008) 5275-5300.
    [51] S. Gopalan, S.C.J.S.m. Singhal, Mechanochemical synthesis of nano-sized CeO 2, 42(10) (2000) 993-996.
    [52] 侯文华, 陈.J.南. 自然科学版, 采用不同方法制备 CeO2 超细粒子: Ⅱ. 冰冻脱水法和尿素?…, 36(1) (2000) 100-103.
    [53] F. Czerwinski, J.J.T.S.F. Szpunar, Optimizing properties of CeO2 sol-gel coatings for protection of metallic substrates against high temperature oxidation, 289(1-2) (1996) 213-219.
    [54] 石硕, 汪.J. 化学通报, W/O 微乳液中 CeO2 超细粒子的制备, (12) (1998) 51-53.
    [55] 鄭信民, 工. 林麗娟 %J 工業材料雜誌, X 光繞射應用簡介, (2002).
    [56] D. Koningsberger, R. Prins, X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES, (1988).
    [57] D.E. Sayers, E.A. Stern, F.W.J.P.r.l. Lytle, New technique for investigating noncrystalline structures: Fourier analysis of the extended x-ray—absorption fine structure, 27(18) (1971) 1204.
    [58] B.K. Teo, Extended X-ray Absorption Fine Structure (EXAFS) Spectroscopy, EXAFS: Basic Principles and Data Analysis, Springer1986, pp. 21-33.
    [59] X. Jiao, H. Song, H. Zhao, W. Bai, L. Zhang, Y.J.A.M. Lv, Well-redispersed ceria nanoparticles: promising peroxidase mimetics for H 2 O 2 and glucose detection, 4(10) (2012) 3261-3267.
    [60] G. Henderson, X. Liu, M.J.P. Fleet, C.o. Minerals, A Ti L-edge X-ray absorption study of Ti-silicate glasses, 29(1) (2002) 32-42.
    [61] A. Braun, K.K. Akurati, G. Fortunato, F.A. Reifler, A. Ritter, A.S. Harvey, A. Vital, T.J.T.J.o.P.C.C. Graule, Nitrogen doping of TiO2 photocatalyst forms a second eg state in the oxygen 1s NEXAFS pre-edge, 114(1) (2010) 516-519.
    [62] W. Ra, M. Nakayama, Y. Uchimoto, M.J.T.J.o.P.C.B. Wakihara, Experimental and computational study of the electronic structural changes in LiTi2O4 spinel compounds upon electrochemical Li insertion reactions, 109(3) (2005) 1130-1134.
    [63] V. Luca, S. Djajanti, R.F.J.T.J.o.P.C.B. Howe, Structural and electronic properties of sol− gel titanium oxides studied by X-ray absorption spectroscopy, 102(52) (1998) 10650-10657.
    [64] F. Farges, G.E. Brown, J.J.P.R.B. Rehr, Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: Comparison between theory and experiment, 56(4) (1997) 1809.
    [65] B. Choudhury, B. Borah, A.J.P. Choudhury, photobiology, Extending photocatalytic activity of TiO2 nanoparticles to visible region of illumination by doping of cerium, 88(2) (2012) 257-264.
    [66] A.K. Tripathi, M.K. Singh, M.C. Mathpal, S.K. Mishra, A.J.J.o.A. Agarwal, Compounds, Study of structural transformation in TiO2 nanoparticles and its optical properties, 549 (2013) 114-120.
    [67] 陳易哲, 鈰摻雜二氧化鈦奈米顆粒之微結構與光觸媒效果之研究, 國立台灣科技大學材料科學與工程系研究所, 碩士論文, 2018

    無法下載圖示 全文公開日期 2025/08/24 (校內網路)
    全文公開日期 2050/08/24 (校外網路)
    全文公開日期 2050/08/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE