簡易檢索 / 詳目顯示

研究生: 楊建樑
Jiann-Liang Yang
論文名稱: 以基於關係圖之模糊多評準決策解決供應商選擇問題
Fuzzy MCDM for Solving Vendor Selection Problems Based on Relation Map
指導教授: 邱煥能
Huan-Neng Chiu
葉瑞徽
Ruey-Huei Yeh
口試委員: 曾國雄
Gwo-Hshiung Tzeng
鐘崑仁
Kun-Jen Chung
盧淵源
Iuan-yaun Lu
謝光進
Kong-King shieh
林義貴
Yi-Kuei Lin
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 85
中文關鍵詞: 供應商選擇模糊多評準決策內部相依非加法型模糊積分妥協優勢排序
外文關鍵詞: vendor selection, multi-criteria decision-making (MCDM), interdependence, non-additive fuzzy integral, VIKOR
相關次數: 點閱:396下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 長久以來,供應商選擇決策被視為是採購部門最重要的任務之一。在現實世界中,根據眾多不同的準則評選適當的供應商所導致大量的資料經常是不精確且具不確定性;而且,在許多真實複雜系統中的評估準則的數目,通常是太多以致於很難決定其獨立或相依關係。然而,大部分傳統決策模式卻未能對準則內之次準則間的相互關係有明確認定,僅假設其為加法性或獨立性。
    因此,本論文提出三個研究議題來詳細探討,提出以關係圖為基礎之模糊多評準決策解決供應商選擇問題。第ㄧ個議題發展一個多準則最佳化妥協優勢排序法來選擇最適供應商,其中,利用模糊德爾非法決定各準則的模糊權重値;評選結果顯示當同時考量最大群體效用與最小個別遺憾時,本決策方法所決定之供應商將更具有權衡效果。第二個議題建構一個整合性模糊多評準決策方法解決供應商選擇問題,考慮過去文獻所忽略的準則間內部相依問題;採用明示結構模型(interpretive structural modeling; ISM)法建構一關係圖,去定義各準則內之次準則的獨立或內部相依關係;同時,運用非加法型模糊積分法得到各共同準則之模糊綜合績效值,此外,實務個案應用結果顯示本論文所提之方法較傳統方法更為合適,特別當現實情況中各次準則存在有內部相依關係。最後一個議題是運用決策評選實驗室(decision making trial and evaluation laboratory; DEMATEL)法去透視一系統中各準則間複雜因果關係的結構和獲得這些準則的相互干擾程度,進一步,藉由Saaty所提出之(analytical network process; ANP)去克服準則間內部相依與回饋的問題,雖然此法在處理上述問題是容易且有效的,但在此方法步驟中,使用平均法(即各群組同等權重)所得到加權後之超矩陣似乎不太合理,因為各準則間存在有不同的干擾程度影響。另外,本論文藉由理想點的概念,針對實務個案應用於改善各供應商使其減少在各次準則之實際績效值與理想目標值間的差距而達到最佳供應商,提供決策者一些有價值的建議。


    Vendor selection decisions have been long considered one of the most important functions of the purchase department. In the real-world, selecting appropriate vendors should be considered and evaluated in terms of many different criteria resulting in a vast body of data that are often inaccurate or uncertain. Furthermore, the numbers of evaluation criteria in the real complex problems are often too large to determine dependent or independent relationships and there may be no solutions for satisfying all criteria to achieve the aspired level simultaneously. However, most conventional decision models cannot be considered for clarifying the interrelations among the sub-criteria of a criterion by virtue of additivity and independence assumptions.
    For this reason, this dissertation is to determine three research topics to explore fuzzy multiple criteria decision making (MCDM) for solving vendor selection problem based on relation map. The first topic is to develop a MCDM optimization with compromise ranking methods to select appropriate vendor, in which a fuzzy Delphi method is applied to determine the weights of criteria. The evaluation results indicate the vendor has the trade-off effects while considering a maximum group gain (benefit) and a minimum individual regret (loss) for a company. The second topic is to formulate an integrated fuzzy MCDM technique for solving vendor selection problems. The interrelation between criteria that was ignored by previous researchers is considered in this dissertation. A relationship map to identify the independence or interdependence of the sub-criteria of a criterion is constructed by using interpretive structural modeling (ISM), and then the fuzzy synthetic performance of each common criterion can also be obtained by applying a non-additive fuzzy integral technique. In addition, the results of a practical application show that the proposed method is more suitable than traditional method, especially when the sub-criteria are interdependent in real situations. The third topic is to employ the decision making trial and evaluation laboratory (DEMATEL) method to visualize the structure of complicated causal relationships between criteria of a system and obtain the influence degree of these criteria. Furthermore, the analytical network process (ANP) method is proposed by Saaty to overcome the problems of interdependence and feedback between criteria. The general methods are easy and useful for conducting the problems above. But in ANP procedures, by using average method (equal cluster- weighted) to obtain the weighted supermatrix seem to be irrational because there are different influence degrees among the criteria. Further, by using the concept of ideal point in this dissertation, the results of a practical application could provide some valuable opinions to decision maker on improve each sub-criterion to reduce the gaps between real performance values and aspired/desired values to achieve the best vendor.

    目 錄 中文摘要 I 英文摘要 Ⅱ 誌謝詞 Ⅳ 目錄 Ⅴ 圖目錄 VII 表目錄 VIII 第一章 緒論 1 1.1 問題背景與研究動機 1 1.2 研究目的 4 1.3 研究方法與架構 5 1.4 相關文獻探討 11 1.5 研究範圍與限制 16 第二章 模糊多評準決策具妥協排序解決供應商選擇 17 2.1 供應商評選問題描述 16 2.2 模糊多評準最佳化模式之建構 18 2.3 實務應用探討 23 2.3.1 本個案公司問題描述 24 2.3.2 資料蒐集 24 2.3.3 結果與分析 25 2.3.4 討論 29 2.5章結論 32 第三章 考慮具交互作用之模糊多評準供應商選擇 33 3.1 供應商評選情境描述 33 3.2 整合性模糊多評準方法之基本原理 36 3.2.1 區別各準則中之次準則間的相互關係 36 3.2.2 模糊權重決定 38 3.2.3 計算具交互作用準則之綜合效用 39 3.3 實務應用探討 42 3.3.1 本個案公司問題描述 42 3.3.2 經由問卷收集資料 42 3.3.3 結果與分析 43 3.3.4 討論 46 3.4章結論 50 第四章 考慮具相依與回饋之多評準供應商選擇問題 51 4.1 結合DEMATEL與改良式ANP之多評準決策方法 51 4.1.1 決策實驗室分析(DEMATEL)法之求解步驟 52 4.1.2 改良式ANP法之求解程序說明 55 4.2 實務應用探討 56 4.2.1 問題描述 57 4.2.2 決定各準則間的關係 57 4.2.3 計算各準則的權重 59 4.3 討論 63 4.4 章結論 65 第五章 綜合結論與建議 66 5.1 綜合結論 66 5.2 未來研究方向與建議 69 參考文獻 71 附錄 第三章整合性方法問卷與求解範例 77 作者簡介 85

    參考文獻
    1. 邱煥能,「德爾菲預測術在企業策略計劃上的應用研究」,中國工業工程學會工業工程學刊,第四卷,第一期,第17-28頁,民國73年。
    2. 黃良志,謝松益與張炳騰,「三種模糊德爾菲法之比較-以銀行員甄選因素之評估為例」,中國工業工程學會工業工程學刊,第十八卷,第一期,第74-86頁,民國90年。
    3. Brans, J.P. and Vincke, P., “A preference ranking organization method,” Management Science, Vol. 31, No.6, pp. 647-656 (1985).
    4. Buckley, J.J., “Fuzzy hierarchical analysis,” Fuzzy Sets and System, Vol. 17, No. 1, pp. 233-247 (1985).
    5. Chang, P.T., Huang, L.C. and Lin, H. J., “The fuzzy Delphi methods via fuzzy statistics and membership function fitting and an application to the human resources,” Fuzzy Sets and Systems, Vol. 112, No. 2, pp. 511-520 (2000).
    6. Chen, L.S. and Cheng, C.H., “Selection IS personnel use fuzzy GDSS based on metric distances method,” European Journal of Operational Research, Vol. 160, No. 3, pp. 803-820 (2005).
    7. Chen, S.J. and Hwang, C.L., Fuzzy multiple attribute decision-making, New York: Springer (1992).
    8. Chen, Y.W. and Tzeng, G.H., “Using fuzzy integral for evaluating subjectively perceived travel costs in a traffic assignment model,” European Journal of Operational Research, Vol. 130, No. 3, pp. 653-664 (2001).
    9. Cheng, C.H. and Lin, Y., ‘Evaluating the best main battle tank using fuzzy decision theory with linguistic criteria evaluation,” European Journal of Operational Research, Vol. 142, No.1, pp. 174-186 (2002).
    10. Chiang, J.H., “Choquet fuzzy integral-based hierarchical networks for decision analysis,” IEEE Transactions on Fuzzy Systems, Vol. 7, No. 1, pp. 63-71 (1999).
    11. Chiu, H.K. and Tzeng, G.H., “Fuzzy multiple-criteria decision-making approach for industrial green engineering,” Environmental Management, Vol. 30, No. 6, pp. 816-830 (2002).
    12. Chiu, H.K., Tzeng, G.H. and Cheng, D.C., “Evaluating sustainable fishing development strategies using fuzzy MCDM approach,” Omega, Vol. 33, No. 2, pp. 223-234 (2005).
    13. Chiu, Y.C., Shyu, J.Z. and Tzeng, G.H., “Fuzzy MCDM for evaluating the e-commerce strategy,” International Journal of Computer Applications in Technology, Vol. 19, No. 1, pp. 12-22 (2004).
    14. Chiu, Y.J., Chen, H.C., Tzeng, G.H. and Shyu, J.Z. “Marketing strategy based on customer behavior for the LCD-TV,” International Journal of Management and Decision Making, Vol. 7, No. 2-3, pp. 143–165 (2006).
    15. Chou, T.Y., Tzeng, S.C. and Tzeng, G.H., “Evaluating IT/IS investments: a fuzzy multi-criteria decision model approach,” European Journal of Operational Research, Vol. 173, No. 3, pp. 1026-1046 (2006).
    16. De Boer, L., Van der Wegen, L. and Telgen, J., “Outranking methods in support of supplier selection,” European Journal of Purchasing and Supply Management, Vol. 4, No. 2, pp. 109-118 (1998).
    17. De Boer, L., Labro, E., Morlacchi, P., “A review of methods supporting supplier selection,” European Journal of Purchasing & Supply Management, Vol. 7, No. 2, pp. 75-89 (2001).
    18. Dean, B. and Schniederjans, M., “A multiple objective selection methodology for strategic industry selection analysis,” IEEE Transactions of Engineering Management, Vol. 38, No. 1, pp. 53-62 (1991).
    19. Dickson, G.W., “An analysis of vendor selection systems and decisions,” Journal of Purchasing, Vol. 2, No. 1, pp. 5-17 (1966).
    20. Ding, J.F. and Liang, G.S., “Using fuzzy MCDM to select partners of strategic alliances for liner shipping,” Information Sciences, Vol. 173, No. 1-3, pp. 197–225 (2005).
    21. Dulmin, R. and Mininno, V., “Supplier selection using a multi-criteria decision aid method,” Journal of Purchasing and Supply Management, Vol. 9, No. 4, pp. 177-187 (2003).
    22. Florez-Lopez, R., “Strategic supplier selection in the added-value perspective: A CI approach,” Information Sciences, Vol. 177, No. 5, pp. 1169-1179 (2007).
    23. Gabus, A. and Fontela, E., “Perception of the world problematique: communication procedure, communicating with those bearing collective responsibility, DEMATEL report No. 1,” Battelle Geneva Research Centre, Geneva, Switzerland (1973).
    24. Ghoudsypour, S.H. and O’Brien, C.O., “A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming,” International Journal of Production Economics, Vol. 56, No. 1, pp. 199-212 (1998).
    25. Grabisch, M., “Fuzzy integral in multicriteria decision-making,” Fuzzy Sets and Systems, Vol. 69, No. 3, pp. 279-298 (1995).
    26. Holt, G.D., “Which contract selection methodology,” International Journal of Project Management, Vol. 16, No. 3, pp. 153-164 (1998).
    27. Houshyar, A. and David, L., “A systematic selection procedure,” Computers and Industrial Engineering, Vol. 23, No. 1-4, pp. 173-176 (1992).
    28. Hsieh, T.Y., Lu, S.T. and Tzeng, G.H., “Fuzzy MCDM approach for planning and design tenders selection in public office buildings,” International Journal of Project Management, Vol. 22, No. 7, pp. 573-584 (2004).
    29. Hwang, C.L. and Yoon, K., Multiple Attribute Decision Making, Springer-Verlag, Berlin (1981).
    30. Ishii, K. and Sugeno, M., “A model of human evaluation process using fuzzy measure,” International Journal of Man-Machine Studies, Vol. 22, No. 1, pp. 19-38 (1985).
    31. Ishikawa, A., Amagasa, M., Shiga, T., Tomizawa, G., Tatsuta, R. and Mieno, H., “The Max-Min Delphi method and fuzzy Delphi method via fuzzy integration,” Fuzzy Sets and Systems, Vol. 55, No. 3, pp. 241-253 (1993).
    32. Karsak, E.E., Sozer, S. and Alptekin, S.E., “Product planning in quality function deployment using a combined analytic network process and goal programming approach” Comput. Ind. Eng, Vol. 44, No. 1, pp. 171–190 (2002).
    33. Kaufmann, A. and Gupta, M. M., Fuzzy Mathematical Models in Engineering and Management Science, Amsterdam, North-Holland, (1998).
    34. Kaslingam, R. and Lee, C., “Selection of vendors a mixed integer programming approaches,” Computers and Industrial Engineering, Vol. 31, No. 2, pp. 347-350 (1996).
    35. Kumar, M., Vrat, P. and Shankar, R., “A fuzzy programming approach for vendor selection problem in a supply chain.” Computers and Industrial Engineering, Vol. 46, No. 1, pp. 69-85 (2004).
    36. Lee, J.W. and Kim, S.H., “Using analytic network process and goal programming for interdependent information system project selection,” Comput. Oper. Res., Vol. 27, No. 4, pp. 367–382 (2000).
    37. Liou, J.J.H., Tzeng, G.H. and Chang, H.C., “Airline safety measurement using a hybrid model,” Journal of Air Transport Management, Vol. 13, No. 1, pp. 243-249 (2007).
    38. Mandal, A. and Deshmukh, S.G., “Vendor selection using interpretive structural modeling,” International Journal of Operations & Production Management, Vol. 14, No. 6, pp. 52-59 (1994).
    39. Meade, L.M. and Presley, A., “R&D project selection using the analytic network process,” IEEE Trans. Eng. Manage., Vol. 49, No. 1, pp. 59–66(2002).
    40. Mikhailov, L., “A fuzzy programming method for deriving priorities in the Analytic Hierarchy Process,” Journal of the Operational Research Society, Vol. 51, No. 3, pp. 341-349 (2000).
    41. Mikhailov, L., “Fuzzy analytical approach of partnership selection in formation of virtual enterprises,” Omega, Vol. 30, No. 2, pp. 393-401 (2002).
    42. Min, H. and Zouh, G., “Supply chain modeling: past, present and future,” Computers and Industrial Engineering, Vol. 43, No. 1, pp. 231-249 (2002).
    43. Mohanty, R.P. and Deshmukh, S.G., “Using of analytic hierarchic process for evaluating sources of supply,” International Journal of Physical Distribution & Logistics Management, Vol. 23, No. 3, pp. 22-28 (1993).
    44. Momoh, J.A. and Zhu, J., “Optimal generation scheduling based on AHP/ANP,” IEEE Trans. Systems Man Cybernet.—Part B: Cybernet., Vol. 33, No. 3, pp. 531–535 (2003).
    45. Morlacchi, P., “Vendor evaluation and selection: the design process and a fuzzy –hierarchical model,” Proceedings of 8th IPSERA Conference, Dublin, (1999).
    46. Narasimhan, R., Talluri, S. and Mendez, D., “Supplier evaluation and rationalization via data envelopment analysis: An empirical example,” Journal Supply Chain Management, Vol. 37, No. 3, pp. 27-32 (2001).
    47. Nydick, R.L. and Hill, R.P., “Using the analytic hierarchy process to structure the supplier selection procedure,” International Journal of Purchasing and Materials Management, Vol. 28, No. 2, pp. 31-36 (1992).
    48. Opricovic, S., Multicriteria optimization of civil engineering system, Faculty of Civil Engineering, Belgrade (1998).
    49. Opricovic, S. and Tzeng, G.H., “Defuzzification within a fuzzy multicriteria decision model,” International Journal of Uncertainty Fuzziness and Knowledge-based Systems, 11(5) 635-652 (2003).
    50. Opricovic, S. and Tzeng, G.H., “Fuzzy multicriteria model for post-earthquake land-use planning,” Natural Hazards Review, Vol. 4, No. 2, pp. 59-64 (2003).
    51. Opricovic, S. and Tzeng, G.H., “Compromise solution by MCDM method: A comparative analysis of VIKOR and TOPSIS,” European Journal of Operational Research, Vol. 156, No. 2, pp. 445-455 (2004).
    52. Opricovic, S. and Tzeng, G.H., “Extended VIKOR method in comparison with outranking methods,” European Journal of Operational Research, Vol. 178, No. 2, pp. 514-529 (2007).
    53. Saaty, T.L., “The Analytical Hierarchy Process,” McGraw-Hill, New York, (1980).
    54. Saaty, T.L., “Decision Making with Dependence and Feedback: Analytic Network Process,” RWS Publications, Pittsburgh, (1996).
    55. Sarkis, J., “A strategic decision framework for Green supply chain management,” J. Cleaner Production, Vol. 11, No. 4, pp. 397–409 (2003).
    56. Shyur, H.J. and Shih, H.S., “A hybrid MCDM model for strategic vendor selection,” Mathematical and Computer Modelling, Vol. 44, No. 8, pp. 749-761 (2007).
    57. Sugeno, M., “Theory of Fuzzy Integrals and its Applications,” Tokyo Institute of Technology, Tokyo, (1974).
    58. Talluri, S. and Narasimhan, R., “Vendor evaluation with performance variability:Amax-min approach,” European Journal of Operational Research, Vol. 146, No. 3, pp. 543-552 (2003).
    59. Talluri, S,. Baker, R. and Sarkis, J., “A framework for designing efficient value chain networks,” International Journal of Production Economics, Vol. 62, No. 1, pp. 133-44 (1999).
    60. Tamura, M., Nagata, H. and Akazawa, K., “Extraction and systems analysis of factors that prevent safety and security by structural models,” In 41st SICE annual conference, Osaka, Japan, (2002).
    61. Tseng, F.M. and Chiu, Y.J., “Hierarchical fuzzy integral stated preference method for Taiwan’s broadband service market,” Omega, Vol. 3, No. 1, pp. 55-64 (2005).
    62. Tsiporkova, E. and Boeva, V., “Multi-step ranking of alternatives in a multi-criteria and multi-expert decision making environment,” Information Sciences, Vol. 176, No. 18, pp. 2673–2697 (2006).
    63. Tzeng, G.H., Teng, M.H., Chen, J.J. and Opricovic, S., “Multi-criteria selection for a restaurant location in Taipei,” International Journal of Hospitality Management, Vol. 21, No. 2, pp.171-187 (2002).
    64. Tzeng, G.H., Lin, C.W. and Opricovic, S., “Multi-criteria analysis of alternative-fuel buses public transportation,” Energy Policy, Vol. 33, No. 11, pp. 1373-1383 (2005).
    65. Tzeng, G.H., Ou Yang, Y.P., Lin, C.T. and Chen, C.B., “Hierarchical MADM with fuzzy integral for evaluating enterprise intranet web sites,” Information Sciences, Vol. 169, No. 3-4, pp. 409-426 (2005).
    66. Tzeng, G.H., Chiang, C.H. and Li, C.W., “Evaluating intertwined effects in e-learning programs: a novel hybrid MCDM model based on factor analysis and DEMATEL,” Expert Systems with Applications, Vol. 32, No. 4, pp.1028-1044 (2007).
    67. Verma, R. and Pullman, M.E., “An analysis of the supplier selection process,” Omega, Vol. 26, No. 6, pp. 739-750. (1998).
    68. Warfield, J.N., “Toward interpretation of complex structural modeling,” IEEE Transactions Systems Man Cybernet, Vol. 4, No. 5, pp. 405-417 (1974a).
    69. Warfield, J.N., “Developing interconnection matrices in structural modeling,” IEEE Transactions Systems Man Cybernet, Vol. 4, No. 1, pp. 81-87 (1974b).
    70. Warfield, J.N., “Societal Systems: Planning, Policy, and Complexity, ” Wiley Interscience, New York, (1976).
    71. Weber, C.A., Current, J.R. and Benton, W.C., “Vendor selection criteria and methods,” European Journal of Operational Research, Vol. 50, No. 1, pp. 2-18 (1991).
    72. Weber, C.A. and Current, J.R., “A multi-objective approach to vendor selection,” European Journal of Operational Research, Vol. 68, No. 2, pp. 173-184 (1993).
    73. Weber, C.A. and Current, J.R., “An optimization approach to determining the number of vendors to employ,” Supply Chain Management: An International Journal, Vol. 5, No. 2, pp. 90-98 (2000).
    74. Willis, T.H. and Huston, C.R., “Evaluation measures of just-in-time supplier performance,” Production and Inventory Management Journal, Vol. 34, No. 2, pp. 1-6 (1993).
    75. Yager, R.R. and Filev, D.P., Essentials of Fuzzy Modeling and Control, Wiley, New York (1994).
    76. Yu, P.L., “A class of solutions for group decision problems,” Management Science, Vol. 19, No. 8, pp. 936-946 (1973).
    77. Zadeh, L.A., “Fuzzy sets,” Information and Control, Vol. 8, No. 3, pp. 338-3531965.
    78. Zeleny, M., Multiple Criteria Decision Making, McGraw-Hill, New York, (1982).
    79. Zhao, R. and Govind, R., “Algebraic characteristics of extended fuzzy numbers,” Information Science, Vol. 54, No. 1, pp. 103-131 (1991).
    80. Zimmermann, H.J., Fuzzy Set Decision Making and Expert System, Kluwer, Boston, (1987).

    無法下載圖示 全文公開日期 2011/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE