簡易檢索 / 詳目顯示

研究生: 林勇志
Yong-Zhi Lin
論文名稱: 應用深度強化學習於具磁流變液阻尼器之半主動減振控制研究
Study on Semi-active Vibration Suppression Control with a Magnetorheological Damper by Deep Reinforcement Learning
指導教授: 郭永麟
Yong-Lin Kuo
口試委員: 郭永麟
Yong-Lin Kuo
蔡明忠
Ming-Jong Tsai
吳宗亮
Tsung-Liang Wu
王可文
Kerwin Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 153
中文關鍵詞: 磁流變液阻尼器半主動控制共振布克-溫模型自適應神經模糊系統深度強化學習
外文關鍵詞: magnetorheological fluid damper, semi-active control, resonance, Bouc-Wen model, adaptive-network-based fuzzy inference system, deep reinforcement learning
相關次數: 點閱:578下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於地震往往會造成嚴重的天然災害,其災害的嚴重程度可能造成建築物倒塌,危害到生命安全,因此有許多文獻利用不同的控制方法對建築物進行抑制振動的研究以避免造成無法挽回的結果。抑振的控制方法主要有三種:被動控制、主動控制、半主動控制。被動控制不需要電源進行抑振,主動控制則是需要大量電源進行抑振但能達到即時控制的效果,半主動控制僅需少許電源即可抑振但無法像主動控制一樣能即時控制。磁流變液阻尼器是半主動控制常用的元件,其優點有響應快、可控性高等優點,有許多文獻利用此元件進行研究,因此本論文利用磁流變液阻尼器進行半主動控制的抑振研究。

    地震並非單一頻率造成,所以必須要考慮最糟糕的情況,因此本論文利用三層樓建築物的共振頻率作為輸入干擾設計PID、LQG、H-infinity控制器的參數並觀察主動控制的抑振效果。接著將磁流變液阻尼器的動態行為利用布克-溫模型建模導入主動控制使其變成半主動控制並且利用自適應神經模糊系統控制電流輸入,並且觀察導入磁流變液阻尼器後的抑振效果,希望半主動控制的抑振效果不會跟主動控制的抑振效果相差太多。最後透過深度強化學習即時改變自適應神經模糊系統的電流參數達到與主動控制一樣即時控制的效果。

    本論文利用1940年El Centro地震驗證本論文提出的半主動控制之抑振果,利用PID控制器時,第三層樓的最大加速度下降了72 %,第三層樓的最大位移下降了72 % ;利用LQG控制器時,第三層樓的最大加速度下降了55 %,第三層樓的最大位移下降了66 % ;利用H-infinity控制器時,第三層樓的最大加速度下降了54 %,第三層樓的最大位移下降了63 %。


    Because earthquakes often cause serious natural disasters, the severity of the disaster may cause buildings to collapse and endanger life safety. Therefore, there are many works of literature using different control methods to suppress vibration of buildings to avoid irreparable results. There are three main control methods for vibration suppression: passive control, active control, and semi-active control. Passive control does not require power supply for vibration suppression, active control requires a large amount of power supply for vibration suppression but can achieve the effect of instant control, and semi-active control requires only a small amount of power supply to suppress vibration but cannot be controlled in real-time like active control. Magnetorheological damper is a commonly used component for semi-active control. Its advantages include fast response and high controllability. There are many works of literature using this component for studying. Therefore, this thesis uses a magnetorheological damper for semi-active control for performing a vibration suppression study.

    Earthquakes are not caused by a single frequency, so the worst case must be considered. First, this thesis uses the resonant frequencies of the three-story building as an input disturbance to design the parameters of PID, LQG, and, H-infinity controllers and observes the vibration suppression effects of active control. Secondly, the dynamic behaviors of the magnetorheological fluid damper are modeled by the Bouc-Wen model and are imported into the active control to make it semi-active control, where the current input is controlled by the adaptive-network-based fuzzy inference system. The vibration suppression effects after introducing the magnetorheological damper are examined, and it is hoped that the vibration suppression effects of semi-active control will not differ too much from those of active control. Finally, the current parameters of the adaptive-network-based fuzzy inference system are changed in real-time through the deep reinforcement learning to achieve the same real-time control effects as an active control.

    This thesis also uses the 1940 El Centro earthquake to verify the vibration suppression effects of the proposed semi-active control. When using the PID controller, the maximum acceleration of the third floor is reduced to 72 %, and the maximum displacement of the third floor is reduced to 72 % ; when using the LQG controller, the maximum acceleration of the third floor is reduced to 55 %, and the maximum displacement of the third floor is reduced to 66 %; when using the H-infinity controller, the maximum acceleration of the third floor is reduced to 54 %, and the maximum displacement of the third floor is reduced to 63 %.

    摘要 I Abstract II 目錄 IV 圖目錄 VI 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 被動控制 2 1.2.2 主動控制 3 1.2.3 半主動控制 4 1.3 研究動機 5 1.4 研究方法 5 1.5 研究貢獻 6 1.6 論文架構 7 第二章 磁流變液阻尼器模型 8 2.1 磁流變液阻尼器簡介 8 2.2 正向模型 11 2.3 反向模型 25 第三章 基於深度強化學習之半主動控制 29 3.1 主動控制 29 3.1.1 比例-積分-微分控制器 30 3.1.2 線性二次高斯控制器 31 3.1.3 控制器 33 3.2 半主動控制 35 3.3 基於深度強化學習之半主動控制 47 第四章 應用案例探討 49 4.1 控制設計概論 49 4.2三層樓建築物模型 50 4.3控制器設計及代理人訓練 53 4.3.1共振及響應 53 4.3.2 主動控制設計 61 4.3.3 半主動控制設計 89 4.3.4 基於深度強化學習之半主動控制設計 101 4.4控制性能比較 113 4.5 地震激勵驗證 116 4.5.1 主動控制 117 4.5.2 半主動控制 124 4.5.3 基於深度強化學習之半主動控制 133 4.5.4 地震激勵下之控制性能比較 142 第五章 結論與建議 144 5.1 結論 144 5.2 未來研究方向 145 參考文獻 146

    [1] I. Lopez, J. M. Busturia, H. Nijmeijer, “Energy dissipation of a friction damper,” Journal of Sound and Vibration, vol. 278, no. 3, pp. 539-561, 2004.
    [2] W. L. Qu, Z. H. Chen, Y. L. Xu, “Dynamic analysis of wind-excited truss tower with friction dampers,” Computers & Structures, vol. 79, no. 32, pp. 2817-2831, 2001.
    [3] C. A. Martínez, O. Curadelli, “Testing and performance of a new friction damper for seismic vibration control,” Journal of Sound and Vibration, vol. 399, pp. 60-74, 2017.
    [4] J. D. Kang, H. Tagawa, “Seismic performance of steel structures with seesaw energy dissipation system using fluid viscous dampers,” Engineering Structures, vol. 56, pp. 431-442, 2013.
    [5] A. Ras, N. Boumechra, “Seismic energy dissipation study of linear fluid viscous dampers in steel structure design,” Alexandria Engineering Journal, vol. 55, no. 3, pp. 2821-2832, 2016.
    [6] Y. Liu, J. Wu, M. Donà, “Effectiveness of fluid-viscous dampers for improved seismic performance of inter-storey isolated buildings,” Engineering Structures, vol. 169, pp. 276-292, 2018.
    [7] C. L. Lee, Y. T. Chen, L. L. Chung, Y. P. Wang, “Optimal design theories and applications of tuned mass dampers,” Engineering Structures, vol. 28, no.1, pp. 43-53, 2006.
    [8] T. Pinkaew, P. Lukkunaprasit, P. J. E. S. Chatupote, “Seismic effectiveness of tuned mass dampers for damage reduction of structures,” Engineering Structures, vol. 25, no.1, pp. 39-46, 2003.
    [9] A. Y. T. Leung, H. Zhang, “Particle swarm optimization of tuned mass dampers,” Engineering Structures, vol. 31, no. 3, pp. 715-728, 2009.
    [10] S. Thenozhi, W. Yu, “Stability analysis of active vibration control of building structures using PD/PID control,” Engineering Structures, vol. 81, pp. 208-218, 2014.
    [11] C. C. Ho, C. K. Ma, “Active vibration control of structural systems by a combination of the linear quadratic Gaussian and input estimation approaches,” Journal of Sound and Vibration, vol. 301, no. 3-5, pp. 429-449, 2007.
    [12] W. Park, K. S. Park, H. M. Koh, “Active control of large structures using a bilinear pole-shifting transform with control method,” Engineering Structures, vol. 30, no. 11, pp. 3336-3344, 2008.
    [13] N. Fallah, M. Ebrahimnejad, “Active control of building structures using piezoelectric actuators,” Applied Soft Computing, vol. 13, no. 1, pp. 449-461, 2013.
    [14] R. Guclu, “Sliding mode and PID control of a structural system against earthquake,” Mathematical and Computer Modelling, vol. 44, no. 1-2, pp. 210-217, 2006.
    [15] C. C. Chang, H. T. Yang, “Control of buildings using active tuned mass dampers,” Journal of Engineering Mechanics, vol. 121, no. 3, pp. 355-366, 1995.
    [16] M. Aldawod, B. Samali, F. Naghdy, K. C. Kwok, “Active control of along wind response of tall building using a fuzzy controller,” Engineering Structures, vol. 23, no. 11, pp. 1512-1522, 2001.
    [17] H. Cao, A. M. Reinhorn, T. T. Soong, “Design of an active mass damper for a tall TV tower in Nanjing, China,” Engineering Structures, vol. 20, no. 3, pp. 134-143, 1998.
    [18] A. P. Wang, Y. H. Lin, “Vibration control of a tall building subjected to earthquake excitation,” Journal of Sound and Vibration, vol. 299, no. 4-5, pp. 757-773, 2007.
    [19] D. H. Yang, J. H. Shin, H. Lee, S. K. Kim, M. K. Kwak, “Active vibration control of structure by active mass damper and multi-modal negative acceleration feedback control algorithm,” Journal of Sound and Vibration, vol. 392, pp. 18-30, 2017.
    [20] X. Yan, Z. D. Xu, Q. X. Shi, “Fuzzy neural network control algorithm for asymmetric building structure with active tuned mass damper,” Journal of Vibration and Control, vol. 26, no. 21-22, pp. 2037-2049, 2020.
    [21] Q. P. Ha, N. M. Kwok, M. T. Nguyen, J. Li, B. Samali, “Mitigation of seismic responses on building structures using MR dampers with Lyapunov‐based control,” Structural Control and Health Monitoring, vol. 15, no. 4, pp. 604-621, 2008.
    [22] M. Bitaraf, O. E. Ozbulut, S. Hurlebaus, L. Barroso, “Application of semi-active control strategies for seismic protection of buildings with MR dampers,” Engineering Structures, vol. 32, no. 10, pp. 3040-3047, 2010.
    [23] Y. Kim, R. Langari, S. Hurlebaus, “Semiactive nonlinear control of a building with a magnetorheological damper system,” Mechanical Systems and Signal Processing, vol. 23, no. 2, pp. 300-315, 2009.
    [24] Z. D. Xu, Y. P. Shen, Y. Q. Guo, “Semi-active control of structures incorporated with magnetorheological dampers using neural networks,” Smart Materials and Structures, vol. 12, no. 1, pp. 80, 2003.
    [25] Y. Peng, J. Yang, J. Li, “Seismic risk–based stochastic optimal control of structures using magnetorheological dampers,” Natural Hazards Review, vol. 18, no. 1, B4016001, 2017.
    [26] D. A. Pohoryles, P. Duffour, “Adaptive control of structures under dynamic excitation using magnetorheological dampers: an improved clipped-optimal control algorithm,” Journal of Vibration and Control, vol. 21, no. 13, pp. 2569-2582, 2015.
    [27] A. K‐Karamodin, H. H‐Kazemi, “Semi‐active control of structures using neuro‐predictive algorithm for MR dampers,” Structural Control and Health Monitoring, vol. 17, no. 3, pp. 237-253, 2010.
    [28] Ö. Şahin, N. G. Adar, M. Kemerli, N. Çaglar, İ. Şahin, Z. Parlak, S. Kükrek, T. Engin, “A comparative evaluation of semi-active control algorithms for real-time seismic protection of buildings via magnetorheological fluid dampers,” Journal of Building Engineering, vol. 42, 102795, 2021.
    [29] J. Kang, H. S. Kim, D. G. Lee, “Mitigation of wind response of a tall building using semi‐active tuned mass dampers,” The Structural Design of Tall and Special Buildings, vol. 20, no. 5, pp. 552-565, 2011.
    [30] D. Zhao, H. Li, “Shaking table tests and analyses of semi-active fuzzy control for structural seismic reduction with a piezoelectric variable-friction damper,” Smart Materials and Structures, vol. 19, no. 10, 105031, 2010.
    [31] L. Wang, C. Xiong, X. Wang, Y. Li, M. Xu, “Hybrid time-variant reliability estimation for active control structures under aleatory and epistemic uncertainties,” Journal of Sound and Vibration, vol. 419, pp. 469-492, 2018.
    [32] 童凱揮, “應用於半主動減振系統之磁流體阻尼器的系統鑑別與控制,” 碩士論文, 國立台北科技大學自動化科技研究所, 2012.
    [33] J. D. Carlson, M. R. Jolly, “MR fluid, foam and elastomer devices,” Mechatronics, vol. 10, no. 4-5, pp.555-569, 2000.
    [34] F. Imaduddin, S. A. Mazlan, H. Zamzuri, “A design and modelling review of rotary magnetorheological damper,” Materials & Design, vol. 51, pp.575-591, 2013.
    [35] L. H. Zong, X. L. Gong, C. Y. Guo, S. H. Xuan, “Inverse neuro-fuzzy MR damper model and its application in vibration control of vehicle suspension system,” Vehicle System Dynamics, vol. 50, no. 7, pp. 1025-1041, 2012.
    [36] M. Rahman, Z. C. Ong, W. T. Chong, S. Julai, “Smart Semi-active PID-ACO control strategy for tower vibration reduction in Wind Turbines with MR damper,” Earthquake Engineering and Engineering Vibration, vol. 18, no. 4, pp. 887-902, 2019.
    [37] M. G. Yang, Z. Q. Chen, X. G. Hua, “An experimental study on using MR damper to mitigate longitudinal seismic response of a suspension bridge,” Soil Dynamics and Earthquake Engineering, vol. 31, no. 8, pp. 1171-1181, 2011.
    [38] 郭文化, 楊大中, 許嘉哲, 邱煥哲, “流動式磁流變液阻尼器之研究,” 技術學刊, 第二十六卷, 第四期, pp.217-223, 2011.
    [39] Ş. Çeşmeci, T. Engin, “Modeling and testing of a field-controllable magnetorheological fluid damper,” International Journal of Mechanical Sciences, vol. 52, no. 8, pp.1036-1046, 2010.
    [40] M. G. Yang, C. Y. Li, Z. Q. Chen, “A new simple non-linear hysteretic model for MR damper and verification of seismic response reduction experiment,” Engineering Structures, vol. 52, pp.434-445, 2013.
    [41] M. Arias-Montiel, K. H. Florean-Aquino, E. Francisco-Agustin, D. M. Pinon-Lopez, R. J. Santos-Ortiz, B. A. Santiago-Marcial, “Experimental characterization of a magnetorheological damper by a polynomial model,” Proceedings of the 2015 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE), pp. 128-133, 2015.
    [42] LORD Corporation, “RD-8040-1 and RD-8041-1 Dampers,” LORD TECHNICAL DATA, 2009.
    [43] X. Chen, L. Xu, S. Zhang, S. Zhao, K. Liu, “Parameter identification of the Bouc-Wen model for the magnetorheological damper using fireworks algorithm,” Journal of Mechanical Science and Technology, vol. 36, no. 5, pp. 2213-2224, 2022.
    [44] X. Lin, S. Chen, G. Huang, “A shuffled frog-leaping algorithm based mixed-sensitivity control of a seismically excited structural building using MR dampers,” Journal of Vibration and Control, vol. 24, no. 13, pp. 2832-2852, 2018.
    [45] H. H. Tsang, R. K. L. Su, A. M. Chandler, “Simplified inverse dynamics models for MR fluid dampers,” Engineering Structures, vol. 28, no. 3, pp. 327-341, 2006.
    [46] H. Deng, R. Yue, X. Lian, J. Deng, J. Zhang, M. Ma, X. Zhong, “Self-updating inverse model for magnetorheological dampers,” Smart Materials and Structures, vol. 28, no. 11, 115033, 2019.
    [47] H. Metered, P. Bonello, S. O. Oyadiji, “The experimental identification of magnetorheological dampers and evaluation of their controllers,” Mechanical Systems and Signal Processing, vol. 24, no. 4, pp. 976-994, 2010.
    [48] D. H. Wang, W. H Liao, “Neural network modeling and controllers for magnetorheological fluid dampers,” Proceedings of the 10th IEEE International Conference on Fuzzy Systems, vol. 3, pp. 1323-1326, 2001.
    [49] D. H. Wang, W. H. Liao, “Modeling and control of magnetorheological fluid dampers using neural networks,” Smart Materials and Structures, vol. 14, no. 1, pp. 111-126, 2004.
    [50] M. Luu, M. D. Martinez-Rodrigo, V. Zabel, C. Könke, “Semi-active magnetorheological dampers for reducing response of high-speed railway bridges,” Control Engineering Practice, vol. 32, pp. 147-160, 2014.
    [51] P. W. Nugroho, H. Du, W. Li, G. Alici, “Implementation of adaptive neuro fuzzy inference system controller on magneto rheological damper suspension,” Proceedings of the 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1399-1403, 2013.
    [52] A. Y. Fallah, T. Taghikhany, “Robust semi-active control for uncertain structures and smart dampers,” Smart Materials and Structures, vol. 23, no. 9, 095040, 2014.
    [53] H. Du, J. Lam, N. Zhang, “Modelling of a magneto-rheological damper by evolving radial basis function networks,” Engineering Applications of Artificial Intelligence, vol. 19, no. 8, pp. 869-881, 2006.
    [54] M. J. L. Boada, B. L. Boada, V. Diaz, “A novel inverse dynamic model for a magnetorheological damper based on network inversion,” Journal of Vibration and Control, vol. 24, no.15, pp. 3434-3453, 2018.
    [55] J. S. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665-685, 1993.
    [56] X. Xu, Y. Peng, X. Du, M. Yu, J. Fu, “Modeling of magnetorheological damper using ANFIS,” Proceedings of the 29th Chinese Control and Decision Conference (CCDC), pp. 2133-2138, 2017.
    [57] K. S. Arsava, Y. Kim, T. El-Korchi, H. S. Park, “Nonlinear system identification of smart structures under high impact loads,” Smart Materials and Structures, vol. 22, no. 5, 055008, 2013.
    [58] H. Wang, H. Hu, “The neuro-fuzzy identification of MR damper,” Proceedings of the 6th International Conference on Fuzzy Systems and Knowledge Discovery, vol. 6, pp. 464-468, 2009.
    [59] M. D. Symans, M. C. Constantinou, “Semi-active control systems for seismic protection of structures: a state-of-the-art review,” Engineering Structures, vol. 21, no. 6, pp. 469-487, 1999.
    [60] F. L. Lewis, Optimal Estimation: With an Introduction to Stochastic Control Theory, Wiley-Interscience, New York, 1986.
    [61] K. J. Åström, Introduction to Stochastic Control Theory, Dover Publications, 2006.
    [62] X. P. Li, B. C. Chang, “An design for aircraft longitudinal flight control,” Proceedings of the 1st IEEE Conference on Control Applications, pp. 596-601, 1992.
    [63] S. Butterworth, “On the Theory of Filter Amplifiers,” Experimental Wireless and the Wireless Engineer, vol. 7, pp. 536-541, 1930.
    [64] L. Roger, Jr. Easton, Fourier Methods in Imaging, John Wiley & Sons, 2010.
    [65] Data of El Centro earthquake, http://web.iyte.edu.tr/~gursoyturan/Dersler/CE-535/deprem_hareketi_en.htm.

    QR CODE