簡易檢索 / 詳目顯示

研究生: PARTHEEBAN CHINNAMUTHU
PARTHEEBAN CHINNAMUTHU
論文名稱: 胺功能化碳納米角作為基因載體的可用性
Availability of amine-functionalized carbon nanohorn as gene carrier
指導教授: 今榮東洋子
Toyoko Imae
口試委員: Masaki Ujihara
Masaki Ujihara
游進陽
Chin-Yang Yu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 63
中文關鍵詞: 碳奈米角聚酰胺胺樹枝狀聚合物脫氧核糖核酸聚腺苷 酸靜電相互作用基因載體
外文關鍵詞: Carbon nanohorns, Poly (amide amine) dendrimer, Deoxyribonucleic acid, Poly adenylic acid, Electrostatic interaction, Gene vector
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳奈米廣泛的應用在生物這個領域。它們擁有高的表面積能讓他們結合分子實體。在這份研究當中,我們探討了新的奈米混合系統的合成以及結構特色的定量測定。作為基因遞送劑,已使用這些衍生物中的一種。 NH2 封端的聚 (酰胺胺) 樹枝狀聚合物優選用於修飾基因載體的CNH的表面官能基。
    胺官能基的 CNH 與 DNA 和 PolyA 的生物材料發生靜電相互作用,因為胺官能化的 CNH 的表面電荷為正電荷,DNA 和 PolyA的生物材料帶負電荷,這兩種生物聚合物彼此靜電相互作用,表現為基因載體。在這項研究中,通過zeta電位、動態光散射和透射電子顯微鏡針對不同濃度的DNA和PolyA證實了帶有胺表面電荷的CNH攜帶DNA/PolyA。這項工作的進一步目的是使用 TGA 結果定量測定 DNA 和 PolyA 鏈數在一個 CNH 胺上的吸附量。這些結果使我們得出一個結論,這些奈米材料可以用作基因載體。


    Carbon nanohorns provide a platform for a wide range of biological applications.
    Their high surface area allows the incorporation of molecular entities. In this
    work, we report the synthesis, structural characterization, and quantitative
    determination of new hybrid systems of carbon nanohorns. As a gene delivery
    agent, one of these derivatives has been used. The NH2-terminated poly (amide
    amine) dendrimer is preferably used to modify surface functional groups of CNHs
    for the gene carriers. The amine functionalized CNH is electrostatically interacting
    with the biological material of DNA and PolyA, because the surface charge of
    amine functionalized CNH is positive and the biological materials of DNA and
    PolyA take a negative charge and these two biopolymers electrostatically interact
    with each other, behaving as gene vector. In this study, the carrying of
    DNA/PolyA by CNH with amine surface charge has been confirmed with zeta
    potential, dynamic light scattering and transmission electron microscope for
    different concentrations of DNA and PolyA. The further purpose of this work is
    the quantitative determination of adsorption of DNA and PolyA chain number on
    one CNH amine by using TGA results. These results allow us to conclude that
    these nanomaterials can be exploited as useful for gene carrier.

    TABLE OF CONTENTS Abstract (in English)…………………………………………………….. IV Abstract (in Chinese)……………………………………………………. V Acknowledgements……………………………………………………… VI Table of content…………………………………………………………. VIII List of figures……………………………………………………………. XI List of Tables……………………………………………………………. XIII CHAPTER-I MOTIVATION AND INTRODUCTION 1.1 Motivation……………………………………………... 1 1.2 Introduction……………………………………………. 3 1.2.1 Gene vector……………………………………………. 3 1.2.2 Carbon nanohorns……………………………………... 5 1.2.3 Poly amido amine dendrimers…………………………. 7 1.2.4 Nucleic acids…………………………………………... 9 1.2.4.1 Deoxyribonucleic acid sodium salt from salmon testes 9 1.2.4.2 Polyadenylic acid ……………………………………... 12 1.2.5 Electrostatic interaction………………………………... 14 CHAPTER-II MATERIALS AND EXPERIMENTAL SECTION 2.1 Materials and reagents…………………………………. 15 2.2 Instruments…………………………………………….. 15 2.3 Material preparation…………………………………… 16 2.3.1 Preparation of acid-treated carbon nano-horn (SWCNH acid) 16 2.3.2 Preparation of amine-treated carbon nano-horn (SWCNH amine) 17 2.3.3 Preparation of DNA@CNH amine…………………….. 18 2.3.4 Preparation of PolyA@CNH amine…………………… 20 CHAPTER-III RESULTS AND DISCUSSION 3.1 Characterization of acid and amine treated CNH……… 22 3.1.1 FTIR Analysis…………………………………………. 22 3.1.2 TEM images…………………………………………… 25 3.2 Characterization of DNA@CNH amine………………. 26 3.2.1 Surface potential of DNA@CNH amine……………… 26 3.2.2 Hydrodynamic size of DNA@CNH amine…………… 28 3.2.3 Configuration of DNA@CNH amine…………………. 30 3.2.4 Quantitative determination of binding of DNA on CNH amine 32 3.3 Characterization of PolyA@CNH amine………………. 35 3.3.1 Surface potential of PolyA@CNH amine……………... 35 3.3.2 Hydrodynamic size of PolyA@CNH amine…………... 37 3.3.3 Configuration of PolyA@CNH amine………………… 39 3.3.4 Quantitative determination of binding of PolyA on CNH amine 41 CHAPTER-IV CONCLUSION ……………………………………… 43 REFERENCES…………………………………………………………... 45

    REFERENCES

    1. C. Booth, H. B. Gaspar and A. J. Thrasher, Trends Mol. Med., 2016, 22, 317–327.
    2. R. Kanasty, J. R. Dorkin, A. Vegas and D. Anderson, Nat. Mater., 2013, 12, 967–977.
    3. L.-H. Wang, D.-C. Wu, H.-X. Xu and Y.-Z. You, Angew. Chem., Int. Ed., 2016, 55, 755–759.
    4. M. Wang, H. Liu, L. Li and Y. Cheng, Nat. Commun., 2014, 5, 3053.
    5. D. Zhi, S. Zhang, S. Cui, Y. Zhao, Y. Wang and D. Zhao, Bioconjugate Chem., 2013, 24, 487–519.
    6. P. Jana, K. Samanta, S. Backer, E. Zellermann, S. Knauer and C. Schmuck, Angew. Chem., Int. Ed., 2017, 56, 8083–8088.
    7. Z. Chu, K. Miu, P. Lung, S. Zhang, S. Zhao, H. C. Chang, G. Lin and Q. Li, Sci. Rep., 2015, 5, 11661.
    8. R. Srinivas, S. Samanta and A. Chaudhuri, Chem. Soc. Rev., 2009, 38, 3326–3338.
    9. C. H. Jones, C.-K. Chen, A. Ravikrishnan, S. Rane and B. A. Pfeifer, Mol. Pharm., 2013, 10, 4082–4098.
    10. L. Li, S. Puhl, L. Meinel and O. Germershaus, Biomaterials, 2014, 35, 7929–7939.
    11. Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, et al. Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 1999; 309(3–4):165–70.
    12. Miyawaki J, Yudasaka M, Azami T, Kubo Y, Iijima S. Toxicity of single-walled carbon nanohorns. ACS Nano 2008; 2(2):213–26.
    13. Lynch RM, Voy BH, Glass DF, Mahurin SM, Zhao B, Hu H, et al. assessing the pulmonary toxicity of single-walled carbon nanohorns. Nanotoxicology 2007; 1(2):157–66.
    14. Fan X, Tan J, Zhang G, Zhang F. Isolation of carbon nanohorns assemblies and their potential for intracellular delivery. Nanotechnology 2007; 18:195103–9.
    15. Murakami T, Fan J, Yudasaka M, Iijima S, Shiba K.Solubilization of single-wall carbon nanohorns using a PEG–doxorubicin conjugate. Mol Pharm 2006; 3(4):407–14.
    16. Murakami T, Ajima K, Miyawaki J, Yudasaka M, Iijima S, Shiba K. Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol Pharm 2004; 1(6):399–405.
    17. Ajima K, Yudasaka M, Murakami T, Maigne A, Shiba K, Iijima S. Carbon nanohorns as anticancer drug carriers. Mol Pharm 2005;2(6):475–80.
    18. Ajima K, Murakami T, Mizoguchi Y, Tsuchida K, Ichihashi T, Iijima S, et al. Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns. ACS Nano 2008; 2(10):2057–64.
    19. Miyawaki J, Yudasaka M, Imai H, Yorimitsu H, Isobe H, Nakamura E, et al. In vivo magnetic resonance imaging of single-walled carbon nanohorns by labeling with magnetite nanoparticles. Adv Mater 2006; 18(8):1010–4.
    20. Rubio N, Herrero MA, Meneghetti M, Dı´az-Ortiz A, Schiavon M, Prato M, et al. Efficient functionalization of carbon nanohorns via microwave irradiation. J Mater Chem 2009; 19:4407–13.
    21. Isobe H, Tanaka T, Maeda R, Noiri E, Solin N, Yudasaka M, et al. Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal free carbon nanotube aggregates. Angew Chem Int Ed 2006; 45(40):6676–80.
    22. Pagona G, Karousis N, Tagmatarchis N. Aryl diazonium functionalization of carbon nanohorns. Carbon 2008;46(4):604–10.
    23. Castro, R. I., Forero-Doria, O., & Guzman, L. (2018). Perspectives of dendrimer- based nanoparticles in cancer therapy. Anais da Academia Brasileira de Ciências, 90(2), 2331-2346.
    24. Gillani, S. S., Munawar, M. A., Khan, K. M., & Chaudhary, J. A. (2020). Synthesis, characterization and applications of poly-aliphatic amine dendrimers and dendrons. Journal of the Iranian Chemical Society, 1-20.
    25. Avti, P. K., & Kakkar, A. (2013). Dendrimers as anti-inflammatory agents. Brazilian Journal of Pharmaceutical Sciences, 49(SPE), 57-65.
    26. Pushkar, S., Philip, A., Pathak, K., & Pathak, D. (2006). Dendrimers: Nanotechnology derived novel polymers in drug delivery. Indian Journal of Pharmaceutical Education and Research, 40(3), 153.
    27. Santos, A., Veiga, F., & Figueiras, A. (2020). Dendrimers as pharmaceutical excipients: Synthesis, properties, toxicity and biomedical applications. Materials, 13(1), 65.
    28. Abbasi, E., Aval, S. F., Akbarzadeh, A., Milani, M., Nasrabadi, H. T., Joo, S. W., & Pashaei-Asl, R. (2014). Dendrimers: synthesis, applications, and properties. Nanoscale research letters, 9(1), 1-10.
    29. Parajapati, S. K., Maurya, S. D., Das, M. K., Tilak, V. K., Verma, K. K., & Dhakar, R. C. (2016). Potential application of dendrimers in drug delivery: A concise review and update. Journal of Drug Delivery and Therapeutics, 6(2), 71-88.
    30. Newkome, G. R., & Shreiner, C. D. (2008). Poly (amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1→ 2 branching motifs: An overview of the divergent procedures. Polymer, 49(1), 1-173.
    31. Janaszewska, A., Lazniewska, J., Trzepiński, P., Marcinkowska, M., & Klajnert- Maculewicz, B. (2019). Cytotoxicity of dendrimers. Biomolecules, 9(8), 330.
    32. Hong, S., Bielinska, A. U., Mecke, A., Keszler, B., Beals, J. L., Shi, X., & Banaszak Holl, M. M. (2004). Interaction of poly (amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjugate chemistry, 15(4), 774-782.
    33. Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotube cell translocation and delivery of nucleic acids in vitro and in vivo. J Mater Chem 2008; 18(1):17–22.
    34. Zhang M, Yudasaka M, Ajima K, Miyawaki J, Iijima S. Lightassisted oxidation of single-wall carbon nanohorns for abundant creation of oxygenated groups that enable chemical modifications with proteins to enhance biocompatibility. ACS Nano 2007; 1(4):265–72.
    35. Boas U, Christensen JB, Heegaard PMH. Dendrimers in medicine and biotechnology. New molecular tools. RSC Publishing; 2006. p. 62–85.
    36. Sonawane ND, Szoka Jr FC, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine–DNA polyplexes. J Biol Chem 2003; 278: 44826–31.
    37. Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nano 2007; 2(8):469–78.
    38. Myers VS, Weir MG, Carino EV, Yancey DF, Pande S, Crooks RM. Dendrimer-encapsulated nanoparticles: new synthetic and characterization methods and catalytic applications. Chem Sci 2011; 2(9):1632–46.
    39. Mei Yang, Minfang Zhang, Masao Kunioka, Ryota Yuge, Toshinari Ichihashi, Sumio Iijima, Masako Yudasaka. Photothermal conversion of carbon nanohorns enhancing caprolactone polymerization. Elsevier, Carbon 83 (2015) 15–20.
    40. Jin Kyoung Park, Jongok Won, Chan Kyung Kim. Characterization of DNA/Poly (ethylene imine) Electrolyte Membranes. Macromolecular Research, Vol. 15, No. 6, pp 581-586 (2007).
    41. Javier Guerra, M. Antonia Herrero, Blanca Carrio´n, Francisco. Pe´rez-Martı´nez, Maribel Lucı´o, Noelia Rubio, Moreno Meneghetti, Maurizio Prato, Valentı´n Cena, Ester Va´ zquez. Carbon nanohorns functionalized with poly amidoamine dendrimers as efficient biocarrier materials for gene therapy. Elsevier, Carbon 50 (2012) 2832–2844.
    42. Georgia Pagona, Grigoris Mountrichas, Georgios Rotas, Nikolaos Karousis, Stergios Pispas and Nikos Tagmatarchis. Properties, applications and functionalization of carbon nanohorns. Int. J. Nanotechnol., Vol. 6, Nos. 1/2, 2009.
    43. Nattinee Krathumkhet, Sabrina, Toyoko Imae, and Marie Pierre Krafft. Nitric Oxide Gas in Carbon Nanohorn/Fluorinated Dendrimer/Fluorinated Poly (ethylene glycol)-Based Hierarchical Nanocomposites as Therapeutic Nanocarriers. ACS Appl. Bio Mater. 2021.
    44. K. Manivannan, C.-C. Cheng and J.-K. Chen. Facile synthesis of poly (N-isopropylacrylamide) coated SiO2 core–shell microspheres via surface–initiated atom transfer radical polymerization for H2O2 biosensor applications. Electroanalysis 2017, 29, 1–9.

    無法下載圖示 全文公開日期 2031/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE