簡易檢索 / 詳目顯示

研究生: Fitriani Jati Rahmania
Fitriani Jati Rahmania
論文名稱: 奈米材料合成用於先進的診斷和治療應用
Nanomaterial Synthesis for Advanced Diagnostic and Therapeutic Applications
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 今榮東洋子
Toyoko Imae
朱瑾
Jinn. P. Chu
張家耀
Jia-Yaw Chang
陳三元
San-Yuan Chen
朱智謙
Chih-Chien Chu
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 69
中文關鍵詞: 癌症碳奈米角治療診斷學糖尿病三維電極感測器金奈米簇
外文關鍵詞: Cancer, carbon nanohorn, theranostics, diabetes, 3D electrode sensor, gold nanocluster
相關次數: 點閱:42下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症和糖尿病是複雜而慢性的疾病,它們之間存在著相互影響的關係,像是糖尿病患者發展各種類型的癌症的風險更高。因此,了解這種關係對於更好地管理和監控這些疾病至關重要。以下的研究涉及兩個獨立但相關的研究,旨在克服這些挑戰。第一個研究介紹了一個三維(3D)非酶電化學葡萄糖感測器。該感測器利用沉積在金奈米簇(AuNC)上的金屬玻璃奈米管陣列(AuNC/MeNTA)和聚吡咯奈米線(AuNC/PPyNW),進行了電化學研究,特別是在0.5 M KOH中進行的循環伏安測量,以評估對葡萄糖檢測的電化學活性和感知性能。本研究提出的AuNC/MeNTA電極在電催化檢測方面優於AuNC/PPyNW電極,表現出高靈敏度(91.3 µAmM-1cm-2),低檢測極限(7.4 µM),廣泛的線性範圍(0.05 - 25 mM)和長期穩定性。研究結果突顯了AuNC/MeNTA電極在精確可靠的葡萄糖感應上的應用。鑒於糖尿病和癌症之間的複雜關係,在第二個研究中,提出了一種新的奈米載體系統,使用功能化的碳奈米角(CNH)和聚乙二醇(PEG@CNH),與載有抗癌藥物的多功能金屬氧化物奈米粒子(NP):阿黴素(DOX)和吉西他濱(GEM)。三氧化二釤(Sm2O3),氧化釓(Gd2O3)和碳點(Cdot)包覆氧化鐵(Fe3O4@Cdot)NP,在奈米複合材料的製備中被使用。它們分別應用於放射療法、醫學成像以及光熱/光動力療法,對於治療診斷應用有著重要的前景。由於CNH具有均勻的形態、低毒性和易於修飾等特點,它是一個適合的藥物載體。此外,PEG的功能化可以提高水分散性和生物相容性。由於奈米複合材料具有較多的結合位點,它們能乘載比原始的CNH更多的藥物。在72小時內,GEM和DOX在pH 5.5的藥物釋放比在pH 7.4時高出兩倍。承載了Sm2O3、Gd2O3和Fe3O4@Cdot NP的CNH提供了一個有望推動多療法藥物進步的途徑。因此,葡萄糖感應技術的進步為糖尿病管理提供了潛在的解決方案。同時,先進奈米材料的發展在治療癌症方面取得了顯著進展。這些研究努力為奈米醫學的發展做出貢獻,為診斷和治療複雜而相互關聯的健康問題提供了新的機會。


    Cancer and diabetes are complex and chronic health conditions that are interconnected. Diabetic patients have a higher risk of developing various types of cancer. Therefore, it is crucial to understand this relationship for better management and monitoring of these conditions. The following research goes into two independent yet related works aimed at overcoming these challenges. In the first work, a 3-dimensional (3D) electrochemical non-enzymatic glucose sensor. This sensor utilized an Au nanocluster (AuNC) deposited on a metallic glass nanotube array (AuNC/MeNTA) and polypyrrole nanowire (AuNC/PPyNW). Electrochemical studies, particularly cyclic voltammetric measurements, were conducted in 0.5 M KOH to assess electrochemical activity and sensing properties for glucose detection. The proposed AuNC/MeNTA electrode was superior to the AuNC/PPyNW electrode in terms of electrocatalytic detection, demonstrating high sensitivity (91.3 µAmM-1cm-2), low detection limit (7.4 µM), a broad linear range (0.05 - 25 mM), and long-term stability. The findings highlight the use of AuNC/MeNTA electrodes for precise and reliable glucose sensing applications. Considering the complex relationship between diabetes and cancer, the second work introduces a new nanocarrier system using carbon nanohorns (CNH) functionalized with polyethylene glycol (PEG@CNH) consisting of multifunctional-metal oxide nanoparticles (NP) loaded with anticancer drugs: doxorubicin (DOX) and gemcitabine (GEM). Samarium oxide (Sm2O3), gadolinium oxide (Gd2O3), and carbon dot (Cdot) coating iron oxide (Fe3O4@Cdot) NP are used in the preparation of the nanocomposites, which are utilized in radiotherapy, medical imaging, and photothermal/photodynamic therapy, respectively, which holds significant promise for theranostic applications. CNH is a suitable drug carrier due to its uniform morphology, low toxicity, and ease of modification. Additionally, PEG functionalization can improve water dispersibility and biocompatibility. As nanocomposites have a high number of binding sites, they tend to load more drugs than pristine CNH. After a period of 72 hours, the drug release of GEM and DOX was twice as high at pH 5.5 compared to pH 7.4. The integration of Sm2O3, Gd2O3, and Fe3O4@Cdot NP on CNH presents a promising pathway for the advancement of multitherapy medications. Thus, the development of advanced nanomaterials has led to advancements in glucose-sensing technologies, offering a potential solution for diabetes management. Simultaneously, significant progress in the field of theranostic cancer therapy. These research efforts are contributing to the development of nanomedicine, providing new opportunities for diagnosing and treating complex and interrelated health issues.

    摘要 I ABSTRACT II ACKNOWLEDGEMENTS IV TABLE OF CONTENTS VI LIST OF TABLES VIII LIST OF FIGURES IX CHAPTER 1 GENERAL INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 4 Diabetes 4 Biosensor 4 Cancer 4 Cancer therapy 5 Chemotherapy 5 Radiotherapy 7 Imaging 7 Phototherapy 8 Theranostics 8 Nanomaterials 9 CHAPTER 3 AN ELECTROCHEMICAL NONENZYMATIC GLUCOSE SENSOR BASED ON AU NANOCLUSTER ON METALLIC NANOTUBE ARRAY AND POLYPYRROLE NANOWIRE 10 Introduction 10 Experimental Method 12 Materials 12 Preparation of AuNC/MeNTA electrodes 12 Preparation of AuNC/PPyNW electrodes 13 Measurements 14 Results and Discussion 15 Characterization of electrodes 15 Glucose detection on electrodes 20 Selectivity, reproducibility, and stability of electrodes 27 Conclusion 30 CHAPTER 4 PREPARATION OF POLYETHYLENE GLYCOL-COATED CARBON NANOHORNS BOUND SAMARIUM, GADOLINIUM, AND IRON OXIDE NANOPARTICLES TOWARDS THERANOSTICS 34 Introduction 34 Experimental Method 36 Materials 36 Instruments 37 Preparation of materials 37 Drug loading and release 39 Results and Discussions 40 Characterization of materials 40 Drug Loading and Release of DOX and GEM 48 In vitro cytotoxicity 49 Conclusion 50 CHAPTER 5 GENERAL CONCLUSION AND FUTURE PERSPECTIVES 52 General Conclusion 52 Future Perspectives 53 REFERENCES 54 CONFERENCES 68 PUBLICATIONS 69

    1. Zhu B, Qu S. The Relationship Between Diabetes Mellitus and Cancers and Its Underlying Mechanisms. Front Endocrinol. 2022;13:800995.
    2. Shahid RK, Ahmed S, Le D, Yadav S. Diabetes and Cancer: Risk, Challenges, Management and Outcomes. Cancers. 2021;13(22):5735.
    3. Galindo RJ, Aleppo G. Continuous glucose monitoring: The achievement of 100 years of innovation in diabetes technology. Diabetes Res Clin Pract. 2020;170:108502.
    4. Mathew TK, Zubair M, Tadi P. Blood Glucose Monitoring. StatPearls. Treasure Island (FL) ineligible companies.: StatPearls Publishing LLC.; 2023.
    5. Ahmad R, Tripathy N, Ahn MS, Bhat KS, Mahmoudi T, Wang Y, et al. Highly Efficient Non-Enzymatic Glucose Sensor Based on CuO Modified Vertically-Grown ZnO Nanorods on Electrode. Sci Rep. 2017;7(1):5715.
    6. Chen WT, Li SS, Chu JP, Feng KC, Chen JK. Fabrication of ordered metallic glass nanotube arrays for label-free biosensing with diffractive reflectance. Biosens Bioelectron. 2018;102:129-35.
    7. Ramírez A, Gacitúa M, Ortega E, Díaz F, del Valle M. Electrochemical in situ synthesis of polypyrrole nanowires. Electrochem commun. 2019;102:94-8.
    8. Liu Y, Zhu Y, Zeng Y, Xu F. An effective amperometric biosensor based on gold nanoelectrode arrays. Nanoscale Res Lett. 2009;4(3):210-5.
    9. VanDyke D, Kyriacopulos P, Yassini B, Wright A, Burkhart E, Jacek S, et al. Nanoparticle based combination treatments for targeting multiple hallmarks of cancer. Int J Nano Stud Technol. 2016;1.
    10. Gao D, Guo X, Zhang X, Chen S, Wang Y, Chen T, et al. Multifunctional Phototheranostic Nanomedicine for Cancer Imaging and Treatment. Mater Today Bio. 2019:100035.
    11. Kalash RS, Lakshmanan VK, Cho CS, Park IK. Theranostics. 2016. In: Biomaterials Nanoarchitectonics [Internet]. Elsevier. 1. [197-215].
    12. Subhan MA, Yalamarty SS, Filipczak N, Parveen F, Torchilin VP. Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment. J Pers Med [Internet]. 2021; 11(6).
    13. Workie YA, Sabrina, Imae T, Krafft MP. Nitric Oxide Gas Delivery by Fluorinated Poly (Ethylene Glycol)@ Graphene Oxide Carrier toward Pharmacotherapeutics. ACS Biomater Sci Eng. 2019;5(6):2926-34.
    14. Krathumkhet N, Sabrina, Imae T, Krafft MP. Nitric Oxide Gas in Carbon Nanohorn/Fluorinated Dendrimer/Fluorinated Poly(ethylene glycol)-Based Hierarchical Nanocomposites as Therapeutic Nanocarriers. ACS Appl Bio Mater. 2021;4(3):2591-600.
    15. Workie YA, Kuo C-Y, Riskawati JH, Krathumkhet N, Imae T, Ujihara M, et al. Hierarchical Composite Nanoarchitectonics with a Graphitic Core, Dendrimer and Fluorocarbon Domains, and a Poly (ethylene glycol) Shell as O2 Reservoirs for Reactive Oxygen Species Production. ACS Appl Mater Interfaces. 2022;14(30):35027-39.
    16. Su C-H, Soendoro A, Okayama S, Rahmania FJ, Nagai T, Imae T, et al. Drug release stimulated by magnet and light on magnetite-and carbon dot-loaded carbon nanohorn. Bull Chem Soc Jpn. 2022;95(4):582-94.
    17. Ton KA, Syu Y-W, Xu J-J, Imae T. Preparation of Sm, Gd and Fe Oxide Nanoparticle-Polydopamine Multicomponent Nanocomposites. Bull Chem Soc Jpn. 2019;92(8):1280-8.
    18. Tao W, Zhang J, Zeng X, Liu D, Liu G, Zhu X, et al. Blended nanoparticle system based on miscible structurally similar polymers: a safe, simple, targeted, and surprisingly high efficiency vehicle for cancer therapy. Adv Healthc Mater. 2015;4(8):1203-14.
    19. Khizar S, Alrushaid N, Alam Khan F, Zine N, Jaffrezic-Renault N, Errachid A, et al. Nanocarriers based novel and effective drug delivery system. Int J Pharm. 2023;632:122570.
    20. Yafout M, Ousaid A, Khayati Y, El Otmani IS. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. Sci Afr. 2021;11:e00685.
    21. Wu H, Hu H, Wan J, Li Y, Wu Y, Tang Y, et al. Hydroxyethyl starch stabilized polydopamine nanoparticles for cancer chemotherapy. Chem Eng J. 2018;349:129-45.
    22. Vigneri P, Frasca F, Sciacca L, Pandini G, Vigneri R. Diabetes and cancer. Endocr Relat Cancer. 2009;16(4):1103-23.
    23. Yoo E-H, Lee S-Y. Glucose biosensors: an overview of use in clinical practice. Sensors. 2010;10(5):4558-76.
    24. Boutati EI, Raptis SA. Self-monitoring of blood glucose as part of the integral care of type 2 diabetes. Diabetes Care. 2009;32(suppl_2):S205-S10.
    25. Cooper GM, Hausman R. A molecular approach. The Cell 2nd ed Sunderland, MA: Sinauer Associates. 2000.
    26. Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2097-116.
    27. Boyle P, Levin B. World cancer report 2008: IARC Press, International Agency for Research on Cancer; 2008.
    28. Fernandez-Fernandez A, Manchanda R, McGoron AJ. Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl Biochem Biotechnol. 2011;165(7):1628-51.
    29. Sutradhar KB, Amin M. Nanotechnology in cancer drug delivery and selective targeting. Int Sch Res Notices. 2014;2014.
    30. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74.
    31. Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(1):1-19.
    32. Lehár J, Krueger AS, Avery W, Heilbut AM, Johansen LM, Price ER, et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol. 2009;27(7):659-66.
    33. Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today. 2012;17(17-18):1044-52.
    34. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21(7):440.
    35. Butowska K, Kozak W, Zdrowowicz M, Makurat S, Rychłowski M, Hać A, et al. Cytotoxicity of doxorubicin conjugated with C60 fullerene. Structural and in vitro studies. Struct Chem. 2019;30(6):2327-38.
    36. Maciel D, Figueira P, Xiao S, Hu D, Shi X, Rodrigues J, et al. Redox-responsive alginate nanogels with enhanced anticancer cytotoxicity. Biomacromolecules. 2013;14(9):3140-6.
    37. Dobson JM, Hohenhaus AE, Peaston AE. Small Animal Clinical Pharmacology. 2nd ed. Edinburgh: Saunders Elsevier; 2008. 330-66 p.
    38. Toschi L, Finocchiaro G, Bartolini S, Gioia V, Cappuzzo F. Role of gemcitabine in cancer therapy. Future Oncol. 2005;1(1):7-17.
    39. Baskar R, Lee KA, Yeo R, Yeoh K-W. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193.
    40. Mohan G, TP AH, AJ J, KM SD, Narayanasamy A, Vellingiri B. Recent advances in radiotherapy and its associated side effects in cancer—a review. J Basic Appl Zool. 2019;80(1):1-10.
    41. Wang X, Yang L, Chen Z, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin. 2008;58(2):97-110.
    42. Baskaran R, Lee J, Yang S-G. Clinical development of photodynamic agents and therapeutic applications. Biomater Res. 2018;22(1):1-8.
    43. Jaque D, Maestro LM, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza J, et al. Nanoparticles for photothermal therapies. Nanoscale. 2014;6(16):9494-530.
    44. Guo S, Song Z, Ji D-K, Reina G, Fauny J-D, Nishina Y, et al. Combined photothermal and photodynamic therapy for cancer treatment using a multifunctional graphene oxide. Pharmaceutics. 2022;14(7):1365.
    45. Zhou S, Li D, Lee C, Xie J. Nanoparticle phototherapy in the era of cancer immunotherapy. Trends Chem. 2020;2(12):1082-95.
    46. Lucky SS, Soo KC, Zhang Y. Nanoparticles in photodynamic therapy. Chem Rev. 2015;115(4):1990-2042.
    47. Shibu ES, Hamada M, Murase N, Biju V. Nanomaterials formulations for photothermal and photodynamic therapy of cancer. J Photochem Photobiol C: Photochem Rev. 2013;15:53-72.
    48. Mauro N, Utzeri MA, Varvarà P, Cavallaro G. Functionalization of metal and carbon nanoparticles with potential in cancer theranostics. Molecules. 2021;26(11):3085.
    49. Jo SD, Ku SH, Won Y-Y, Kim SH, Kwon IC. Targeted nanotheranostics for future personalized medicine: recent progress in cancer therapy. Theranostics. 2016;6(9):1362.
    50. Li X, Kim J, Yoon J, Chen X. Cancer‐associated, stimuli‐driven, turn on theranostics for multimodality imaging and therapy. Adv Mater. 2017;29(23):1606857.
    51. Hong H, Wang F, Zhang Y, Graves SA, Eddine SBZ, Yang Y, et al. Red fluorescent zinc oxide nanoparticle: a novel platform for cancer targeting. ACS Appl Mater Interfaces. 2015;7(5):3373-81.
    52. Mauro N, Li Volsi A, Scialabba C, Licciardi M, Cavallaro G, Giammona G. Photothermal ablation of cancer cells using folate-coated gold/graphene oxide composite. Curr Drug Deliv. 2017;14(3):433-43.
    53. Li Y, Chang Y, Lian X, Zhou L, Yu Z, Wang H, et al. Silver nanoparticles for enhanced cancer theranostics: in vitro and in vivo perspectives. J Biomed Nanotechnol. 2018;14(9):1515-42.
    54. Mauro N, Scialabba C, Puleio R, Varvarà P, Licciardi M, Cavallaro G, et al. SPIONs embedded in polyamino acid nanogels to synergistically treat tumor microenvironment and breast cancer cells. Int J Pharm. 2019;555:207-19.
    55. Shi J, Wang L, Gao J, Liu Y, Zhang J, Ma R, et al. A fullerene-based multi-functional nanoplatform for cancer theranostic applications. Biomaterials. 2014;35(22):5771-84.
    56. Mauro N, Utzeri MA, Buscarino G, Sciortino A, Messina F, Cavallaro G, et al. Pressure-dependent tuning of photoluminescence and size distribution of carbon nanodots for theranostic anticancer applications. Materials. 2020;13(21):4899.
    57. Mauro N, Scialabba C, Agnello S, Cavallaro G, Giammona G. Folic acid-functionalized graphene oxide nanosheets via plasma etching as a platform to combine NIR anticancer phototherapy and targeted drug delivery. Mater Sci Eng C. 2020;107:110201.
    58. Skripka A, Karabanovas V, Jarockyte G, Marin R, Tam V, Cerruti M, et al. Decoupling theranostics with rare earth doped nanoparticles. Adv Funct Mater. 2019;29(12):1807105.
    59. Yu Z, Eich C, Cruz LJ. Recent advances in rare-earth-doped nanoparticles for NIR-II imaging and cancer theranostics. Front Chem. 2020;8:496.
    60. Brito B, Price TW, Gallo J, Bañobre-López M, Stasiuk GJ. Smart magnetic resonance imaging-based theranostics for cancer. Theranostics. 2021;11(18):8706.
    61. Muthu MS, Leong DT, Mei L, Feng S-S. Nanotheranostics˗ application and further development of nanomedicine strategies for advanced theranostics. Theranostics. 2014;4(6):660.
    62. Shi C, Zhou Z, Lin H, Gao J. Imaging beyond seeing: early prognosis of cancer treatment. Small Methods. 2021;5(3):2001025.
    63. Li Z, Zhu L, Liu W, Zheng Y, Li X, Ye J, et al. Near-infrared/pH dual-responsive nanocomplexes for targeted imaging and chemo/gene/photothermal tri-therapies of non-small cell lung cancer. Acta Biomater. 2020;107:242-59.
    64. Gao Z, Mu W, Tian Y, Su Y, Sun H, Zhang G, et al. Self-assembly of paramagnetic amphiphilic copolymers for synergistic therapy. J Mater Chem B. 2020;8(31):6866-76.
    65. Guo Y, Jiang K, Shen Z, Zheng G, Fan L, Zhao R, et al. A small molecule nanodrug by self-assembly of dual anticancer drugs and photosensitizer for synergistic near-infrared cancer theranostics. ACS Appl Mater Interfaces. 2017;9(50):43508-19.
    66. Abd Elkodous M, El-Sayyad GS, Abdelrahman IY, El-Bastawisy HS, Mosallam FM, Nasser HA, et al. Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf B. 2019;180:411-28.
    67. Attia MS, El-Sayyad GS, Saleh SS, Balabel NM, El-Batal AI. Spirulina platensis-polysaccharides promoted green silver nanoparticles production using gamma radiation to suppress the expansion of pear fire blight-producing Erwinia amylovora. J Clust Sci. 2019;30(4):919-35.
    68. Organization WH. Global diffusion of eHealth: making universal health coverage achievable: report of the third global survey on eHealth: World Health Organization; 2017.
    69. Roy A, Singha SS, Majumder S, Singha A, Banerjee S, Satpati B. Electroless Deposition of Pd Nanostructures for Multifunctional Applications as Surface-Enhanced Raman Scattering Substrates and Electrochemical Nonenzymatic Sensors. ACS Appl Nano Mater. 2019;2(4):2503-14.
    70. Teymourian H, Barfidokht A, Wang J. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020). Chem Soc Rev. 2020;49(21):7671-709.
    71. Li G, Qi X, Zhang G, Wang S, Li K, Wu J, et al. Low-cost voltammetric sensors for robust determination of toxic Cd (II) and Pb (II) in environment and food based on shuttle-like α-Fe2O3 nanoparticles decorated β-Bi2O3 microspheres. Microchem J. 2022;179:107515.
    72. Fu Y, Liang F, Tian H, Hu J. Nonenzymatic glucose sensor based on ITO electrode modified with gold nanoparticles by ion implantation. Electrochim Acta. 2014;120:314-8.
    73. Xia Y, Li G, Zhu Y, He Q, Hu C. Facile Preparation of Metal-free Graphitic-like Carbon Nitride/Graphene Oxide Composite for Simultaneous Determination of Uric Acid and Dopamine. Microchem J. 2023:108726.
    74. Wan X, Du H, Tuo D, Qi X, Wang T, Wu J, et al. UiO-66/Carboxylated Multiwalled Carbon Nanotube Composites for Highly Efficient and Stable Voltammetric Sensors for Gatifloxacin. ACS Appl Nano Mater. 2023;6(20):19403 - 13.
    75. Li G, Qi X, Wu J, Xu L, Wan X, Liu Y, et al. Ultrasensitive, label-free voltammetric determination of norfloxacin based on molecularly imprinted polymers and Au nanoparticle-functionalized black phosphorus nanosheet nanocomposite. J Hazard Mater. 2022;436:129107.
    76. Li G, Wu J, Qi X, Wan X, Liu Y, Chen Y, et al. Molecularly imprinted polypyrrole film-coated poly (3, 4-ethylenedioxythiophene): polystyrene sulfonate-functionalized black phosphorene for the selective and robust detection of norfloxacin. Mater Today Chem. 2022;26:101043.
    77. Hwang D-W, Lee S, Seo M, Chung TD. Recent advances in electrochemical non-enzymatic glucose sensors–a review. Anal Chim Acta. 2018;1033:1-34.
    78. Emir G, Dilgin Y, Ramanaviciene A, Ramanavicius A. Amperometric nonenzymatic glucose biosensor based on graphite rod electrode modified by Ni-nanoparticle/polypyrrole composite. Microchem J. 2021;161:105751.
    79. Bialas K, Moschou D, Marken F, Estrela P. Electrochemical sensors based on metal nanoparticles with biocatalytic activity. Mikrochim Acta. 2022;189(4):172.
    80. Soomro RA, Akyuz OP, Ozturk R, Ibupoto ZH. Highly sensitive non-enzymatic glucose sensing using gold nanocages as efficient electrode material. Sens Actuators, B. 2016;233:230-6.
    81. Imae T, Rahmawati A, Berhe AM, Kebede MA. Au Quantum Clusters and Plasmonic Quantum Nanoparticles Synthesized under Femtosecond-Pulse Laser Irradiation in Aqueous Solution and in ZIF-8 for Catalytic Reduction of 4-Nitrophenol. ACS Appl Nano Mater. 2022;5(11):16824-52.
    82. Chen J-K, Chen W-T, Cheng C-C, Yu C-C, Chu JP. Metallic glass nanotube arrays: Preparation and surface characterizations. Mater Today Bio. 2018;21(2):178-85.
    83. Chu JP, Tseng K-W, Liu C-Y. Large-area alloy nanotube arrays with highly-ordered periodicity: fabrication and characterization. Materials & Design. 2021;209:109998.
    84. Peshoria S, Kumar Narula A. In-situ preparation and properties of gold nanoparticles embedded polypyrrole composite. Colloids Surf, A. 2018;555:217-26.
    85. Chang CC, Geleta TA, Imae T. Effect of carbon dots on supercapacitor performance of carbon nanohorn/conducting polymer composites. Bull Chem Soc Jpn. 2021;94(2):454-62.
    86. Takeuchi N, Chan CT, Ho K. Au (111): A theoretical study of the surface reconstruction and the surface electronic structure. Phys Rev B. 1991;43(17):13899.
    87. Arjona N, Torres‒Pacheco LJ, Álvarez‒Contreras L, Guerra‒Balcázar M. Gold structures on 3D carbon electrodes as highly active nanomaterials for the clean energy conversion of crude glycerol. Electrochim Acta. 2022;430:141098.
    88. Ghorannevis Z, Akbarnejad E, Ghoranneviss M. Structural and morphological properties of ITO thin films grown by magnetron sputtering. J Theor Appl Phys. 2015;9:285-90.
    89. Weldegrum GS, Singh P, Huang B-R, Chiang T-Y, Tseng K-W, Yu C-J, et al. ZnO-NWs/metallic glass nanotube hybrid arrays: fabrication and material characterization. Surf Coat. 2021;408:126785.
    90. Kumar A, Kumar S, Jana S, Prakash R. Investigation of the Synergistic Effect in Polypyrrole/Ni-Doped NASICON Composites for an Enhanced Hydrogen Evolution Reaction. Energ Fuels. 2023;37(6):4552-65.
    91. Khan GG, Ghosh S, Sarkar A, Mandal G, Mukherjee GD, Manju U, et al. Defect engineered d 0 ferromagnetism in tin-doped indium oxide nanostructures and nanocrystalline thin-films. J Appl Phys. 2015;118(7):074303.
    92. Jain S, Karmakar N, Shah A, Kothari D, Mishra S, Shimpi NG. Ammonia detection of 1-D ZnO/polypyrrole nanocomposite: Effect of CSA doping and their structural, chemical, thermal and gas sensing behavior. Appl Surf Sci. 2017;396:1317-25.
    93. Ding Q, Kang Z, He X, Wang M, Lin M, Lin H, et al. Eggshell membrane-templated gold nanoparticles as a flexible SERS substrate for detection of thiabendazole. Microchim Acta. 2019;186:1-9.
    94. Han L, Zhang S, Han L, Yang D-P, Hou C, Liu A. Porous gold cluster film prepared from Au@ BSA microspheres for electrochemical nonenzymatic glucose sensor. Electrochim Acta. 2014;138:109-14.
    95. Xu M, Song Y, Ye Y, Gong C, Shen Y, Wang L, et al. A novel flexible electrochemical glucose sensor based on gold nanoparticles/polyaniline arrays/carbon cloth electrode. Sens Actuators B Chem. 2017;252:1187-93.
    96. Padmapriya S, Harinipriya S. Hydrogen storage capacity of polypyrrole in alkaline medium: effect of oxidants and counter anions. J Mater Res. 2019;8(5):4435-47.
    97. Juſík T, Podešva P, Farka Z, Kováſ D, Skládal P, Foret F. Nanostructured gold deposited in gelatin template applied for electrochemical assay of glucose in serum. Electrochim Acta. 2016;188:277-85.
    98. Burke L. Premonolayer oxidation and its role in electrocatalysis. Electrochim Acta. 1994;39(11-12):1841-8.
    99. Chitare YM, Jadhav SB, Pawaskar PN, Magdum VV, Gunjakar JL, Lokhande CD. Metal oxide-based composites in nonenzymatic electrochemical glucose sensors. Ind Eng Chem Res. 2021;60(50):18195-217.
    100. Liu J, Shen J, Ji S, Zhang Q, Zhao W. Research progress of electrode materials for non-enzymatic glucose electrochemical sensors. Sens Diagn. 2023;2:36-45.
    101. Narayanan JS, Slaughter G. Towards a dual in-line electrochemical biosensor for the determination of glucose and hydrogen peroxide. Bioelectrochemistry. 2019;128:56-65.
    102. Phetsang S, Kidkhunthod P, Chanlek N, Jakmunee J, Mungkornasawakul P, Ounnunkad K. Copper/reduced graphene oxide film modified electrode for non-enzymatic glucose sensing application. Sci Rep. 2021;11(1):9302.
    103. Haghparas Z, Kordrostami Z, Sorouri M, Rajabzadeh M, Khalifeh R. Highly sensitive non-enzymatic electrochemical glucose sensor based on dumbbell-shaped double-shelled hollow nanoporous CuO/ZnO microstructures. Sci Rep. 2021;11(1):1-12.
    104. Ejeta SY, Imae T. Selective colorimetric and electrochemical detections of Cr(III) pollutant in water on 3-mercaptopropionic acid-functionalized gold plasmon nanoparticles. Anal Chim Acta. 2021;1152:338272.
    105. Sathishkumar P, Mangalaraja RV, Pandiyarajan T, Gracia-Pinilla MA, Escalona N, Herrera C, et al. Low frequency ultrasound assisted sequential and co-precipitation syntheses of nanoporous RE (Gd and Sm) doped cerium oxide. RSC Advances. 2015;5(29):22578-86.
    106. Cherevko S, Chung C-H. Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sens Actuators, B. 2009;142(1):216-23.
    107. Wang J, Cao X, Wang X, Yang S, Wang R. Electrochemical oxidation and determination of glucose in alkaline media based on Au (111)-like nanoparticle array on indium tin oxide electrode. Electrochim Acta. 2014;138:174-86.
    108. Hsu C-W, Su F-C, Peng P-Y, Young H-T, Liao S, Wang G-J. Highly sensitive non-enzymatic electrochemical glucose biosensor using a photolithography fabricated micro/nano hybrid structured electrode. Sens Actuators, B. 2016;230:559-65.
    109. Shen C, Su J, Li X, Luo J, Yang M. Electrochemical sensing platform based on Pd–Au bimetallic cluster for non-enzymatic detection of glucose. Sens Actuators, B. 2015;209:695-700.
    110. Zhu B, Yu L, Beikzadeh S, Zhang S, Zhang P, Wang L, et al. Disposable and portable gold nanoparticles modified-laser-scribed graphene sensing strips for electrochemical, non-enzymatic detection of glucose. Electrochim Acta. 2021;378:138132.
    111. Chelaghmia ML, Fisli H, Nacef M, Brownson DA, Affoune AM, Satha H, et al. Disposable non-enzymatic electrochemical glucose sensors based on screen-printed graphite macroelectrodes modified via a facile methodology with Ni, Cu, and Ni/Cu hydroxides are shown to accurately determine glucose in real human serum blood samples. Anal Methods. 2021;13(25):2812-22.
    112. Crapnell RD, Street RJ, Ferreira-Silva V, Down MP, Peeters M, Banks CE. Electrospun nylon fibers with integrated polypyrrole molecularly imprinted polymers for the detection of glucose. Anal Chem. 2021;93(39):13235-41.
    113. Lou Y, Yao Z, Fu S, Liu S, Zhu X, Huang W, et al. Pd–Ni–P metallic glass nanoparticles for nonenzymatic glucose sensing. Prog Nat Sci: Mater Int. 2023;33(2):244-9.
    114. Arikan K, Burhan H, Sahin E, Sen F. A sensitive, fast, selective, and reusable enzyme-free glucose sensor based on monodisperse AuNi alloy nanoparticles on activated carbon support. Chemosphere. 2022;291:132718.
    115. ACS. Cancer Facts & Figures 2019. Atlanta: American Cancer Society; 2019.
    116. Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, et al. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev. 2011;111(2):253-80.
    117. Kandasamy G, Sudame A, Luthra T, Saini K, Maity D. Functionalized hydrophilic superparamagnetic iron oxide nanoparticles for magnetic fluid hyperthermia application in liver cancer treatment. ACS Omega. 2018;3(4):3991-4005.
    118. Bae H, Ahmad T, Rhee I, Chang Y, Jin S-U, Hong S. Carbon-coated iron oxide nanoparticles as contrast agents in magnetic resonance imaging. Nanoscale Res Lett. 2012;7(1):1-5.
    119. Teng X, Li F, Lu C, Li B. Carbon dot-assisted luminescence of singlet oxygen: the generation dynamics but not the cumulative amount of singlet oxygen is responsible for the photodynamic therapy efficacy. Nanoscale Horiz. 2020;5(6):978-85.
    120. Anh Do TT, Imae T. Photodynamic and Photothermal Effects of Carbon Dots-Coated Magnetite- and Porphyrin-Conjugated Confeito-Like Gold Nanoparticles. Bull Chem Soc Jpn. 2021;94(8):2079-88.
    121. Hu Z, Ahrén M, Selegård L, Skoglund C, Söderlind F, Engström M, et al. Highly Water‐Dispersible Surface‐Modified Gd2O3 Nanoparticles for Potential Dual‐Modal Bioimaging. Chem - Eur J. 2013;19(38):12658-67.
    122. Parlak Y, Gumuser G, Sayit E. Samarium-153 Therapy and Radiation Dose for Prostate Cancer. 2016. In: Prostate Cancer: Leading-edge Diagnostic Procedures and Treatments [Internet]. InTech; [81-9].
    123. Kratochwil C, Giesel FL, Rathke H, Fink R, Dendl K, Debus J, et al. [(153)Sm]Samarium-labeled FAPI-46 radioligand therapy in a patient with lung metastases of a sarcoma. Eur J Nucl Med Mol Imaging. 2021.
    124. Murray I, Du Y. Systemic Radiotherapy of Bone Metastases With Radionuclides. Clin Oncol (R Coll Radiol). 2021;33(2):98-105.
    125. Anderson P, Nuñez R. Samarium lexidronam (153Sm-EDTMP): skeletal radiation for osteoblastic bone metastases and osteosarcoma. Expert Rev Anticancer Ther. 2007;7(11):1517-27.
    126. Tan HY, Yeong CH, Wong YH, McKenzie M, Kasbollah A, Md Shah MN, et al. Neutron-activated theranostic radionuclides for nuclear medicine. Nucl Med Biol. 2020;90-91:55-68.
    127. Poljaková J, Eckschlager T, Hřebačková J, Hraběta J, Stiborová M. The comparison of cytotoxicity of the anticancer drugs doxorubicin and ellipticine to human neuroblastoma cells. Interdiscip Toxicol. 2008;1(2):186.
    128. Alexander CM, Maye MM, Dabrowiak JC. DNA-capped nanoparticles designed for doxorubicin drug delivery. Chem comm. 2011;47(12):3418-20.
    129. Pawłowska J, Tarasiuk J, Wolf CR, Paine MJ, Borowski E. Differential ability of cytostatics from anthraquinone group to generate free radicals in three enzymatic systems: NADH dehydrogenase, NADPH cytochrome P450 reductase, and xanthine oxidase. Oncol Res. 2003;13(5):245-52.
    130. Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol Cells 2011;31(4):295-302.
    131. Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res Lett. 2021;16(1):1-21.
    132. Ajima K, Murakami T, Mizoguchi Y, Tsuchida K, Ichihashi T, Iijima S, et al. Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns. ACS nano. 2008;2(10):2057-64.
    133. Wang J, Wang R, Zhang F, Yin Y, Mei L, Song F, et al. Overcoming Multidrug Resistance by A Combination of Chemotherapy and Photothermal Therapy Mediated by Carbon Nanohorns. J Mater Chem B. 2016;4(36):6043-51.
    134. Lin Z, Jiang B-P, Liang J, Wen C, Shen X-C. Phycocyanin functionalized single-walled carbon nanohorns hybrid for near-infrared light-mediated cancer phototheranostics. Carbon. 2019;143:814-27.
    135. Curcio M, Cirillo G, Saletta F, Michniewicz F, Nicoletta FP, Vittorio O, et al. Carbon Nanohorns as Effective Nanotherapeutics in Cancer Therapy. C. 2020;7(1).
    136. Murakami T, Fan J, Yudasaka M, Iijima S, Shiba K. Solubilization of Single-Wall Carbon Nanohorns Using a PEG− Doxorubicin Conjugate. Mol Pharmaceutics. 2006;3(4):407-14.
    137. Dinan NM, Atyabi F, Rouini M-R, Amini M, Golabchifar A-A, Dinarvand R. Doxorubicin loaded folate-targeted carbon nanotubes: Preparation, cellular internalization, in vitro cytotoxicity and disposition kinetic study in the isolated perfused rat liver. Mater Sci Eng, C. 2014;39:47-55.
    138. Efa MT, Imae T. Hybridization of carbon-dots with ZnO nanoparticles of different sizes. J Taiwan Inst Chem Eng. 2018;92:112-7.
    139. Fite MC, Rao J-Y, Imae T. Effect of External Magnetic Field on Hybrid Supercapacitors of Nitrogen-Doped Graphene with Magnetic Metal Oxides. Bull Chem Soc Jpn. 2020;93(9):1139-49.
    140. Hsu Y-H, Hsieh H-L, Viswanathan G, Voon SH, Kue CS, Saw WS, et al. Multifunctional carbon-coated magnetic sensing graphene oxide-cyclodextrin nanohybrid for potential cancer theranosis. J Nanopart Res. 2017;19(11).
    141. Siriviriyanun A, Imae T, Calderó G, Solans C. Phototherapeutic functionality of biocompatible graphene oxide/dendrimer hybrids. Colloids Surf, B. 2014;121:469-73.
    142. Siriviriyanun A, Popova M, Imae T, Kiew LV, Looi CY, Wong WF, et al. Preparation of graphene oxide/dendrimer hybrid carriers for delivery of doxorubicin. Chem Eng J. 2015;281:771-81.
    143. Do TTA, Grijalvo S, Imae T, Garcia-Celma MJ, Rodríguez-Abreu C. A nanocellulose-based platform towards targeted chemo-photodynamic/photothermal cancer therapy. Carbohydr Polym. 2021;270:118366.
    144. Siriviriyanun A, Tsai Y-J, Voon SH, Kiew SF, Imae T, Kiew LV, et al. Cyclodextrin-and dendrimer-conjugated graphene oxide as a nanocarrier for the delivery of selected chemotherapeutic and photosensitizing agents. Mater Sci Eng, C. 2018;89:307-15.
    145. Bazzi R, Flores M, Louis C, Lebbou K, Zhang W, Dujardin C, et al. Synthesis and properties of europium-based phosphors on the nanometer scale: Eu2O3, Gd2O3: Eu, and Y2O3: Eu. J Colloid Interface Sci. 2004;273(1):191-7.
    146. Gao J, Zhao Y, Yang W, Tian J, Guan F, Ma Y, et al. Preparation of samarium oxide nanoparticles and its catalytic activity on the esterification. Mater Chem Phys. 2003;77(1):65-9.
    147. Pramoda K, Moses K, Ikram M, Vasu K, Govindaraj A, Rao CNR. Synthesis, Characterization and Properties of Single-Walled Carbon Nanohorns. J Clust Sci. 2013;25(1):173-88.
    148. Selvamani V. Stability Studies on Nanomaterials Used in Drugs. 2019. In: Characterization and Biology of Nanomaterials for Drug Delivery [Internet]. Elsevier. 1. [425-44].
    149. Salas G, Veintemillas-Verdaguer S, Morales MdP. Relationship between physico-chemical properties of magnetic fluids and their heating capacity. Int J Hyperthermia. 2013;29(8):768-76.
    150. Wattanakul K, Imae T, Chang W-W, Chu C-C, Nakahata R, Yusa S-i. Oligopeptide-side chained alginate nanocarrier for melittin-targeted chemotherapy. Polym J. 2019;51(8):771-80.
    151. Feoktistova M, Geserick P, Leverkus M. Crystal violet assay for determining viability of cultured cells. Cold Spring Harb Protoc. 2016;2016(4).

    無法下載圖示 全文公開日期 2034/01/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2114/01/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE