簡易檢索 / 詳目顯示

研究生: 孫英科
KHOA ANH TON
論文名稱: 治療型奈米粒子在生物相容高分子的包覆之研究
Encapsulation of therapeutic nanoparticles in biocompatible polymers
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 陳立仁
Li-Jen Chen
戴子安
Chi-An Dai
陳崇賢
Chorng-Shyan Chern
今榮東洋子
Toyoko Imae
氏原真樹
Masaki Ujihara
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 67
中文關鍵詞: 癌症治疗生物材料
外文關鍵詞: Gadolinium oxide, Theranostics biomaterial
相關次數: 點閱:227下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 納米粒子作為治療和診斷劑,例如氧化釤,氧化钆和氧化鐵,其尺寸小於 20nm被包覆在
    生物相容性聚合物像是聚多巴胺和藻酸鹽之中。目的是創造用於癌症治療球形或直徑約
    20-40μm的治療型診斷生物材料。
    一種簡便的方法,有經濟效率且環保地用於合成直徑約 250nm的聚多巴胺球體以及納
    米粒子嵌入的聚多巴胺。關於金屬氧化物@聚多巴胺,利用水和乙醇的混合物(70%/
    30%(V/V))含有分散的納米顆粒,然後加入一定量的多巴胺鹽酸鹽,並在 15分鐘內
    攪拌稀釋。氨水溶液產生鹼性環境,導致形成黑色且水分散性的金屬氧化物@聚多巴胺複
    合材料。另一方面,研究了溶劑體積,pH和單體濃度作為多巴胺鹽酸鹽對生物材料的影
    響及其形態利用 TEM-SEM進行調查。最佳生物材料三金屬氧化物包覆在聚多巴胺中通過
    STEM數據得知為球形且很小。
    對於金屬氧化物@藻酸鹽@聚多巴胺,光學顯微鏡和動態光散射數據表明,藻酸鹽經
    由超聲波處理得到了微米尺度。因此,利用能量(瓦特),藻酸鹽濃度或鈣離子濃度來研
    究尺寸的變化。然而,超聲能量影響導致金屬氧化物藻酸鹽結構中的空腔不是球形的。,
    因此,聚多巴胺塗層是必需的為了改善最佳生物材料的型態。單層塗佈或多層塗佈利用熱
    重分析進行且定量。


    Nanoparticles as therapeutic and diagnostic agents such as Samarium oxide, Gadolinium
    oxide and Iron oxide got the size less than 20nm were encapsulated in biocompatible polymers, polydopamine and alginate. The purpose is to create the theranostics biomaterial either spherical or 20-40µm in diameter that utilized in cancer treatment.
    A facile method, economic efficiency and eco-friendly, was applied to synthesis the
    spheres of polydopamine around 250nm in diameter as well as nanoparticle-embedded
    polydopamine. With respect to metal oxide@polydopamine, a mixture of water and ethanol as the ratio 70%/30% (volume/volume) contains dispersed nanoparticles followed by an amount of dopamine hydrochloride which added and stirred to dilute in 15 minutes. Ammonia solution created the alkaline ambience led to the formation of black water-dispersible metal oxide@polydopamine composite material. On the other hand, the influence of the volume of solvent, pH and concentration of monomer as dopamine hydrochloride in the morphology of biomaterial was investigated by TEM-SEM. The optimum biomaterial, tri-metal oxide encapsulated in polydopamine by STEM, obtained the spherical shape but the size is small.
    In terms of metal oxide@alginate@polydopamine, the optical microscope and dynamic
    light scattering data showed that alginate got the micrometer in size by the ultrasonic power. Herein, the energy (Watts), concentration of alginate or concentration of calcium ion was employed to investigate the change in size. However, the metal oxide@alginate wasn’t spherical because of the cavity in its structure owing to sonication energy. Hence, coating layer of polydopamine is necessary in improving the shape of optimum biomaterial. Single coating or multiple coating was conducted and quantified by thermogravitry analysis.

    CONTENTS CHAPTER 1-Introduction and Motivation 1 1.1. Introduction 1 1.1.1. Sm2O3- a therapeutic agent 1 1.1.2. Gd2O3 and Fe3O4- diagnostic agents 4 1.1.3. Polydopamine 6 1.1.4. Alginate 7 1.2. Motivation 10 CHAPTER 2-Experiemental section 12 2.1. Reagents 12 2.2. Synthesis of materials 12 2.2.1. Synthesis of nanoparticles 12 2.2.2. Synthesis of PDA and metal oxide@PDA 14 2.2.3. Synthesis of metal oxide@Alginate 15 2.2.4. Synthesis of metal oxide@alginate@PDA 15 2.3. Characterization 16 CHAPTER 3- Polydopamine and metal oxide@polydopamine 17 3.1. Polydopamine (PDA) 17 3.2. The core-shell metal oxide@PDA material 20 3.2.1. The volume of solution to the size and shape of Sm2O3@PDA 20 3.2.2. Effect of pH to the morphology of Sm2O3@PDA 22 3.2.3. The DA concentration influences the Sm2O3@PDA appearance 24 3.2.4. Gd2O3@PDA 26 3.2.5. Fe3O4@PDA 27 3.2.6. Sm2O3, Gd2O3 and Fe3O4 encapsulated by PDA 29 Chapter 4: Alginate and metal oxide@alginate@polydopamide 34 4.1. Alginate 34 4.1.1. The size vs ultrasonication energy 34 4.1.2. The size vs alginate concentration 36 4.1.3. The size vs CaCl2 concentration 38 4.2. Synthesize metal oxide@alginate@polydopamine 40 4.2.1. Single coating by PDA 40 4.2.2. Multiple coating by PDA 44 Chapter 5: Conclusions and recommendations 51 5.1. Conclusions 51 5.1.1. Metal oxide@PDA 51 5.1.2. Metal oxide@alginate@PDA 51 5.2. Recommendations 52 APPENDIX 58

    1. Hashikin, N., et al. Samarium-153 labelled microparticles for targeted radionuclide therapy of liver tumor. in World Congress on Medical Physics and Biomedical Engineering, June 7-12, 2015, Toronto, Canada. 2015. Springer.
    2. Hashikin, N.A.A., et al., Organ doses from hepatic radioembolization with 90 Y, 153 Sm, 166 Ho and 177 Lu: A Monte Carlo simulation study using Geant4. Journal of Physics: Conference Series, 2016. 694(1): p. 012059.
    3. Dolezal, J., J. Vizda, and K. Odrazka, Prospective Evaluation of Samarium-153-EDTMP Radionuclide Treatment for Bone Metastases in Patients with Hormone-Refractory Prostate Cancer. Urologia Internationalis, 2007. 78(1): p. 50-57.
    4. Hashikin, N.A.A., et al., Neutron Activated Samarium-153 Microparticles for Transarterial Radioembolization of Liver Tumour with Post-Procedure Imaging Capabilities. PLoS ONE, 2015. 10(9): p. e0138106.
    5. Di Corato, R., et al., High-Resolution Cellular MRI: Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs. ACS Nano, 2013. 7(9): p. 7500-7512.
    6. Ryu, J.H., P.B. Messersmith, and H. Lee, Polydopamine Surface Chemistry: A Decade of Discovery. ACS applied materials & interfaces, 2018. 10(9): p. 7523-7540.
    7. Luo, H., et al., Facile synthesis of novel size-controlled antibacterial hybrid spheres using silver nanoparticles loaded with poly-dopamine spheres. RSC Advances, 2015. 5(18): p. 13470-13477.
    8. Chen, S., Y. Cao, and J. Feng, Polydopamine as an efficient and robust platform to functionalize carbon fiber for high-performance polymer composites. ACS applied materials & interfaces, 2013. 6(1): p. 349-356.
    9. Hu, J., et al., Synthesis of core-shell structured alumina/Cu microspheres using activation by silver nanoparticles deposited on polydopamine-coated surfaces. RSC Advances, 2016. 6(85): p. 81767-81773.
    10. Liu, D., et al., Polydopamine-Encapsulated Fe3O4 with an Adsorbed HSP70 Inhibitor for Improved Photothermal Inactivation of Bacteria. ACS Applied Materials & Interfaces, 2016. 8(37): p. 24455-24462.
    11. Zeng, T., et al., In situ growth of gold nanoparticles onto polydopamine-encapsulated magnetic microspheres for catalytic reduction of nitrobenzene. Applied Catalysis B: Environmental, 2013. 134-135: p. 26-33.
    12. Ding, X., et al., Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy †Electronic supplementary information (ESI) available: Experimental procedures, supplementary figures and table of relaxivity of the present work and reported Mn-based nanoparticles. See DOI: 10.1039/c6sc01320a Click here for additional data file. Chemical Science, 2016. 7(11): p. 6695-6700.
    13. Xi, J., et al., Mn(2+)-coordinated PDA@DOX/PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy. International Journal of Nanomedicine, 2017. 12: p. 3331-3345.
    14. Lee, C., et al., Bioinspired, Calcium-Free Alginate Hydrogels with Tunable Physical and Mechanical Properties and Improved Biocompatibility. Biomacromolecules, 2013. 14(6): p. 2004-2013.
    15. Huang, S.-L. and L. yung-sheng, The Size Stability of Alginate Beads by Different Ionic Crosslinkers. Vol. 2017. 2017. 1-7.
    16. Pereira, R., A. Mendes, and P. Bártolo, Alginate/Aloe Vera Hydrogel Films for Biomedical Applications. Procedia CIRP, 2013. 5: p. 210-215.
    17. Siqueira, P., et al., Three-Dimensional Stable Alginate-Nanocellulose Gels for Biomedical Applications: Towards Tunable Mechanical Properties and Cell Growing. Nanomaterials (Basel, Switzerland), 2019. 9(1): p. 78.
    18. Goswami, S., J. Bajpai, and A.K. Bajpai, Calcium alginate nanocarriers as possible vehicles for oral delivery of insulin. Journal of Experimental Nanoscience, 2014. 9(4): p. 337-356.
    19. Sarei, F., et al., Alginate nanoparticles as a promising adjuvant and vaccine delivery system. Indian journal of pharmaceutical sciences, 2013. 75(4): p. 442-449.
    20. Dey, S., et al., Alginate stabilized gold nanoparticle as multidrug carrier: Evaluation of cellular interactions and hemolytic potential. Carbohydrate Polymers, 2016. 136: p. 71-80.
    21. Sachan, N., et al., Sodium alginate: The wonder polymer for controlled drug delivery. Vol. 2. 2009.
    22. Ogutu, F.O., et al., Ultrasonic modification of selected polysaccharides-review. Journal of Food Processing & Technology, 2015. 6(5): p. 1.
    23. Lin, Y.-S., et al., Gadolinium(III)-Incorporated Nanosized Mesoporous Silica as Potential Magnetic Resonance Imaging Contrast Agents. The Journal of Physical Chemistry B, 2004. 108(40): p. 15608-15611.
    24. Chen, Z., et al., Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent. Journal of Drug Targeting, 2011. 19(8): p. 657-665.
    25. Muthu, M.S., et al., Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics, 2014. 4(6): p. 660-677.
    26. De La Vega, J.C., et al., Radioembolization of Hepatocellular Carcinoma with Built-In Dosimetry: First in vivo Results with Uniformly-Sized, Biodegradable Microspheres Labeled with (188)Re. Theranostics, 2019. 9(3): p. 868-883.
    27. Krishnakumar, B. and T. Imae, Chemically modified novel PAMAM-ZnO nanocomposite: Synthesis, characterization and photocatalytic activity. Applied Catalysis A: General, 2014. 486: p. 170-175.
    28. Efa, M.T. and T. Imae, Hybridization of carbon-dots with ZnO nanoparticles of different sizes. Journal of the Taiwan Institute of Chemical Engineers, 2018.
    29. Ton, K.A., et al., Preparation of Sm, Gd and Fe Oxide Nanoparticle-Polydopamine Multicomponent Nanocomposites. Bulletin of the Chemical Society of Japan. 0(0): p. null.
    30. Mascolo, M.C., Y. Pei, and T.A. Ring, Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials, 2013. 6(12): p. 5549-5567.
    31. Rani, S. and G.D. Varma, Superparamagnetism and metamagnetic transition in Fe3O4 nanoparticles synthesized via co-precipitation method at different pH. Physica B: Condensed Matter, 2015. 472: p. 66-77.
    32. Jiang, X., Y. Wang, and M. Li, Selecting water-alcohol mixed solvent for synthesis of polydopamine nano-spheres using solubility parameter. Scientific Reports, 2014. 4: p. 6070.
    33. Ho, C.-C. and S.-J. Ding, The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery. Journal of Materials Science: Materials in Medicine, 2013. 24(10): p. 2381-2390.
    34. Della Vecchia, N.F., et al., Tris Buffer Modulates Polydopamine Growth, Aggregation, and Paramagnetic Properties. Langmuir, 2014. 30(32): p. 9811-9818.
    35. Feng, L., et al., Molecular weight distribution, rheological property and structural changes of sodium alginate induced by ultrasound. Ultrasonics Sonochemistry, 2017. 34: p. 609-615.
    36. Ganguly, S., et al., Synthesis of polydopamine-coated halloysite nanotube-based hydrogel for controlled release of a calcium channel blocker. RSC Advances, 2016. 6(107): p. 105350-105362.
    37. Soares, J.d.P., et al., Thermal behavior of alginic acid and its sodium salt. Eclética Química, 2004. 29(2): p. 57-64.

    無法下載圖示 全文公開日期 2024/07/25 (校內網路)
    全文公開日期 2024/07/25 (校外網路)
    全文公開日期 2024/07/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE