簡易檢索 / 詳目顯示

研究生: 黃文育
YOHAN - WIDJAJA
論文名稱: Producing Versatile Single-Walled Carbon Nanohorns and Its Application
Producing Versatile Single-Walled Carbon Nanohorns and Its Application
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 氏原真樹
Masaki Ujihara
吳嘉文
Chia-Wen Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 52
中文關鍵詞: 單壁碳奈米角氧化鉑奈米粒子甲醇氧化電催化
外文關鍵詞: single-walled carbon nanohorns, oxidation, platinum nanoparticles, methanol oxidation, electrocatalyst
相關次數: 點閱:243下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單壁碳奈米角 (SWNHs)在分類上為碳的同素異形體。因為單壁碳奈米角為一球型結構所以具有空隙和內部孔洞。而,大量的空間和位置使其在不同的應用上成為引人注目的材料,但其需要先行處理已具備多功能SWNHs。以溶膠凝膠法引入羧基來增加SWNHs總表面積的研究藉由硝酸氧化達成。最佳氧化時間為一小時,羧基的官能基、大的表面積和水溶性SWNHs可被產生並且保持原始的構型。此外,SWNHs-ox可容易的純化從石墨的不純物及無不純的SWNHs-ox產生。
    多功能的SWNHs-ox在目前的研究可用在支撐鉑奈米粒子(PtNPs)藉由第四層胺終端基的樹枝狀高分子(PAMAM, G4-NH2)。隨著G4-NH2的存在,封入樹枝狀高分子內部的鉑奈米粒子(4 nm)以均相修飾和穩定的與SWNHs-ox表面接觸。本研究PtNPs有40wt%。使用介電泳(DEP)片的三電極系統被用來分析SWNHs-ox-Den(PtNPs)的電催化活性。隨著G4-NH2的協助,觸媒具有高耐久性因為沉澱物仍留在工作電極即使CV以250週期掃描。觸媒在高電催化活性有更多的PtNPs被引入,但Den(PtNPs)的分佈亦扮演重要的角色在增加電催化活性方面。然而,SWNHs-ox-Den(PtNPs)的電催化活性與藉由樹枝狀高分子裝在的奈米碳管(CNT-Den(PtNPs))兩著在比較上SWNHs-ox-Den(PtNPs)的電催化活性並沒有比較好。


    Single wall carbon nanohorns (SWNHs) is classified as one allotrope of nanocarbons which possesses interstitial and internal pores because of its unique spherical structure. Abundant spaces and sites make it become an attractive material for various applications, but prior treatment is needed in order to produce a versatile SWNHs. Facile method to introduce abundant carboxyl groups as well as to increase total surface area of SWNHs was investigated by oxidizing it with mild [HNO3]. With optimum time of 40 min to 1 h oxidation, carboxyl group functionalized, large surface area and well-dispersed SWNHs in water can be produced while maintaining its pristine morphological structure. Moreover, SWNHs-ox that was produced can be easily purified from graphite impurities, yielding an impurities-free SWNHs-ox.
    Current research of versatile SWNHs-ox can be used as a support for platinum nanoparticles (PtNPs) by means of amine-terminated fourth generation poly(amidoamine) (PAMAM) dendrimer (G4-NH2). With the existence of G4-NH2, dendrimer-encapsulated platinum nanoparticles (Den(PtNPs)) around 4 nm in size were homogeneously decorated and firmly attached on the SWNHs-ox surface. PtNPs content up to around 40 wt% can be achieved in current research. Three electrode system using dielectrophoretic (DEP) chip was used to analyze the SWNHs-ox-Den(PtNPs) electrocatalytic activity. With the help of G4-NH2, the catalyst possessed high durability since the deposition was still retained on the working electrode even after CV scanning of 250 cycles. More PtNPs content introduced results in higher electrocatalytic activity of catalyst, but the distribution of Den(PtNPs) also played an important role to enhance its electrocatalytic activity. Nevertheless, compact nanocarbon (carbon nanotube, graphene) was preferred for electrocatalyst application.

    Abstract I 摘要 II Acknowledgements III Table of Contents IV List of Figures VI List of Tables VIII Part A Producing Versatile Single-Walled Carbon Nanohorns (SWNHs) by Covalent Functionalization 1 Chapter I Introduction 1 I.1. Background 1 I.2. Problems formulation 3 I.3. Goal of the research 3 Chapter II Research Methodology 4 II.1. Chemicals 4 II.2. Experimental procedure 4 II.1.1. Oxidizing SWNHs with mild [HNO3] 4 II.2.1. Purification of SWNHs-ox 4 II.3. Equipment for characterization 4 Chapter III Results and Discussion 6 III.1. Effect of oxidation on SWNHs 6 III.2. Characterization of SWNHs 12 III.3. Surface properties of SWNHs 17 III.4. Purification of SWNHs 20 Chapter IV Conclusion 22 Part B Single-Walled Carbon Nanohorns (SWNHs) as Support for Dendrimer-Pt Nanoparticles and Studies of Its Electrocatalytic Activity toward Methanol Oxidation 23 Chapter I Introduction 23 I.1. Background 23 I.1.1. SWNHs as supporting material 23 I.1.2. The role of dendrimer 24 I.1.3. About platinum nanoparticle and method to study electrocatalytic activity 25 I.2. Problems formulation 26 I.3. Goal of the research 26 Chapter II Research Methodology 27 II.1. Chemicals and materials 27 II.2. Experimental procedure 27 II.1.1. Synthesis of SWNHs-Den(PtNPs) 27 II.1.2. Specimen preparation and measurement of electrocatalytic activity 28 II.3. Equipment for characterization 29 Chapter III Results and Discussion 30 III.1. Immobilization of Den(PtNPs) on SWNHs-ox 30 III.2. Electrocatalytic activity of samples 36 Chapter IV Conclusion 42 General Conclusion 43 Appendix 44 Part A 44 Part B 46 References 48

    Iijima, S.; Yudasaka, M.; Yamada, R.; Bandow, S.; Suenaga, K.; Kokai, F.; Takahashi, K. Chemical Physics Letters 1999, 309, (3–4), 165-170.
    2. Azami, T.; Kasuya, D.; Yuge, R.; Yudasaka, M.; Iijima, S.; Yoshitake, T.; Kubo, Y. The Journal of Physical Chemistry C 2008, 112, (5), 1330-1334.
    3. Kasuya, D.; Yudasaka, M.; Takahashi, K.; Kokai, F.; Iijima, S. The Journal of Physical Chemistry B 2002, 106, (19), 4947-4951.
    4. Mountrichas, G.; Ichihashi, T.; Pispas, S.; Yudasaka, M.; Iijima, S.; Tagmatarchis, N. The Journal of Physical Chemistry C 2009, 113, (14), 5444-5449.
    5. lijima, S.; Ichihashi, T.; Ando, Y. Nature 1992, 356, (6372), 776-778.
    6. Ajayan, P. M.; Ebbesen, T. W.; Ichihashi, T.; Iijima, S.; Tanigaki, K.; Hiura, H. Nature 1993, 362, (6420), 522-525.
    7. Ajima, K.; Yudasaka, M.; Suenaga, K.; Kasuya, D.; Azami, T.; Iijima, S. Advanced Materials 2004, 16, (5), 397-401.
    8. Yang, C.-M.; Kasuya, D.; Yudasaka, M.; Iijima, S.; Kaneko, K. The Journal of Physical Chemistry B 2004, 108, (46), 17775-17782.
    9. Cioffi, C.; Campidelli, S.; Sooambar, C.; Marcaccio, M.; Marcolongo, G.; Meneghetti, M.; Paolucci, D.; Paolucci, F.; Ehli, C.; Rahman, G. M. A.; Sgobba, V.; Guldi, D. M.; Prato, M. Journal of the American Chemical Society 2007, 129, (13), 3938-3945.
    10. Miyawaki, J.; Yudasaka, M.; Iijima, S. The Journal of Physical Chemistry B 2004, 108, (30), 10732-10735.
    11. Utsumi, S.; Miyawaki, J.; Tanaka, H.; Hattori, Y.; Itoi, T.; Ichikuni, N.; Kanoh, H.; Yudasaka, M.; Iijima, S.; Kaneko, K. The Journal of Physical Chemistry B 2005, 109, (30), 14319-14324.
    12. Yuge, R.; Yudasaka, M.; Miyawaki, J.; Kubo, Y.; Ichihashi, T.; Imai, H.; Nakamura, E.; Isobe, H.; Yorimitsu, H.; Iijima, S. The Journal of Physical Chemistry B 2005, 109, (38), 17861-17867.
    13. Fan, J.; Yudasaka, M.; Miyawaki, J.; Ajima, K.; Murata, K.; Iijima, S. The Journal of Physical Chemistry B 2006, 110, (4), 1587-1591.
    14. Yuge, R.; Ichihashi, T.; Shimakawa, Y.; Kubo, Y.; Yudasaka, M.; Iijima, S. Advanced Materials 2004, 16, (16), 1420-1423.
    15. Yang, C. M.; Noguchi, H.; Murata, K.; Yudasaka, M.; Hashimoto, A.; Iijima, S.; Kaneko, K. Advanced Materials 2005, 17, (7), 866-870.
    16. Zhang, J.; Lei, J.; Xu, C.; Ding, L.; Ju, H. Analytical Chemistry 2010, 82, (3), 1117-1122.
    17. Zhu, S.; Liu, Z.; Hu, L.; Yuan, Y.; Xu, G. Chemistry – A European Journal 2012, 18, (51), 16556-16561.
    18. Isobe, H.; Tanaka, T.; Maeda, R.; Noiri, E.; Solin, N.; Yudasaka, M.; Iijima, S.; Nakamura, E. Angewandte Chemie International Edition 2006, 45, (40), 6676-6680.
    19. Yoshida, S.; Sano, M. Chemical Physics Letters 2006, 433, (1–3), 97-100.
    20. Zhang, M.; Yudasaka, M.; Ajima, K.; Miyawaki, J.; Iijima, S. ACS Nano 2007, 1, (4), 265-272.
    21. Kosaka, M.; Kuroshima, S.; Kobayashi, K.; Sekino, S.; Ichihashi, T.; Nakamura, S.; Yoshitake, T.; Kubo, Y. The Journal of Physical Chemistry C 2009, 113, (20), 8660-8667.
    22. Chen, J. P.; Wu. Langmuir 2004, 20, (6), 2233-2242.
    23. Zhang, J.; Zou, H.; Qing, Q.; Yang, Y.; Li, Q.; Liu, Z.; Guo, X.; Du, Z. The Journal of Physical Chemistry B 2003, 107, (16), 3712-3718.
    24. www.nec.com Carbon Nanohorn Product Specification. (January 2013)
    25. Zhang, M.; Yudasaka, M.; Miyawaki, J.; Fan, J.; Iijima, S. The Journal of Physical Chemistry B 2005, 109, (47), 22201-22204.
    26. Tamura, G.; Yudasaka, M.; Iijima, S. Japanese Journal of Applied Physics 2009, 48, (48).
    27. Ajima, K.; Yudasaka, M.; Murakami, T.; Maigné, A.; Shiba, K.; Iijima, S. Molecular pharmaceutics 2005, 2, (6), 475-480.
    28. Murakami, T.; Ajima, K.; Miyawaki, J.; Yudasaka, M.; Iijima, S.; Shiba, K. Molecular pharmaceutics 2004, 1, (6), 399-405.
    29. Ajima, K.; Murakami, T.; Mizoguchi, Y.; Tsuchida, K.; Ichihashi, T.; Iijima, S.; Yudasaka, M. ACS Nano 2008, 2, (10), 2057-2064.
    30. Bekyarova, E.; Hashimoto, A.; Yudasaka, M.; Hattori, Y.; Murata, K.; Kanoh, H.; Kasuya, D.; Iijima, S.; Kaneko, K. The Journal of Physical Chemistry B 2005, 109, (9), 3711-3714.
    31. Miyawaki, J.; Yudasaka, M.; Imai, H.; Yorimitsu, H.; Isobe, H.; Nakamura, E.; Iijima, S. The Journal of Physical Chemistry B 2006, 110, (11), 5179-5181.
    32. Yang, C.-M.; Kim, Y.-J.; Endo, M.; Kanoh, H.; Yudasaka, M.; Iijima, S.; Kaneko, K. Journal of the American Chemical Society 2006, 129, (1), 20-21.
    33. Yuge, R.; Manako, T.; Nakahara, K.; Yasui, M.; Iwasa, S.; Yoshitake, T. Carbon 2012, 50, (15), 5569-5573.
    34. Bekyarova, E.; Murata, K.; Yudasaka, M.; Kasuya, D.; Iijima, S.; Tanaka, H.; Kahoh, H.; Kaneko, K. The Journal of Physical Chemistry B 2003, 107, (20), 4681-4684.
    35. Murata, K.; Miyawaki, J.; Yudasaka, M.; Iijima, S.; Kaneko, K. Carbon 2005, 43, (13), 2826-2830.
    36. Comisso, N.; Berlouis, L. E. A.; Morrow, J.; Pagura, C. International Journal of Hydrogen Energy 2010, 35, (17), 9070-9081.
    37. Liu, Y.; Brown, C. M.; Neumann, D. A.; Geohegan, D. B.; Puretzky, A. A.; Rouleau, C. M.; Hu, H.; Styers-Barnett, D.; Krasnov, P. O.; Yakobson, B. I. Carbon 2012, 50, (13), 4953-4964.
    38. Murata, K.; Hirahara, K.; Yudasaka, M.; Iijima, S.; Kasuya, D.; Kaneko, K. The Journal of Physical Chemistry B 2002, 106, (49), 12668-12669.
    39. Sano, N.; Ohtsuki, F. Journal of Electrostatics 2007, 65, (4), 263-268.
    40. Shi, L.; Liu, X.; Niu, W.; Li, H.; Han, S.; Chen, J.; Xu, G. Biosensors and Bioelectronics 2009, 24, (5), 1159-1163.
    41. Zhu, S.; Li, H.; Niu, W.; Xu, G. Biosensors and Bioelectronics 2009, 25, (4), 940-943.
    42. Zeng, L.; Zhang, L.; Barron, A. R. Nano Letters 2005, 5, (10), 2001-2004.
    43. Adhikari, P. D.; Tai, Y.; Ujihara, M.; Chu, C. C.; Imae, T.; Motojima, S. J Nanosci Nanotechnol 2010, 10, (2), 833-9.
    44. Tuinstra, F.; Koenig, J. L. The Journal of Chemical Physics 1970, 53, (3), 1126-1130.
    45. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Physics Reports 2005, 409, (2), 47-99.
    46. Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Physics Reports 2009, 473, (5-6), 51-87.
    47. Dillon, A. C.; Parilla, P. A.; Alleman, J. L.; Gennett, T.; Jones, K. M.; Heben, M. J. Chemical Physics Letters 2005, 401, (4–6), 522-528.
    48. Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen, M. J.; Shan, H.; Kittrell, C.; Hauge, R. H.; Tour, J. M.; Smalley, R. E. Science 2003, 301, (5639), 1519-1522.
    49. Martı; amp; x; nez, M. T.; Callejas, M. A.; Benito, A. M.; Cochet, M.; Seeger, T.; Ansón, A.; Schreiber, J.; Gordon, C.; Marhic, C.; Chauvet, O.; Fierro, J. L. G.; Maser, W. K. Carbon 2003, 41, (12), 2247-2256.
    50. Biniak, S.; Szymański, G.; Siedlewski, J.; Świa̧tkowski, A. Carbon 1997, 35, (12), 1799-1810.
    51. Fanning, P. E.; Vannice, M. A. Carbon 1993, 31, (5), 721-730.
    52. Winograd, N.; Gaarenstroom, S. W., Physical Methods in Modern Chemical Analysis Academic Press, Inc.: New York, U.S.A., 1980; Vol. 2.
    53. Utsumi, S.; Honda, H.; Hattori, Y.; Kanoh, H.; Takahashi, K.; Sakai, H.; Abe, M.; Yudasaka, M.; Iijima, S.; Kaneko, K. The Journal of Physical Chemistry C 2007, 111, (15), 5572-5575.
    54. Serp, P.; Corrias, M.; Kalck, P. Applied Catalysis A: General 2003, 253, (2), 337-358.
    55. Machado, B. F.; Serp, P. Catalysis Science & Technology 2012, 2, (1), 54-75.
    56. Miyawaki, J.; Matsumura, S.; Yuge, R.; Murakami, T.; Sato, S.; Tomida, A.; Tsuruo, T.; Ichihashi, T.; Fujinami, T.; Irie, H.; Tsuchida, K.; Iijima, S.; Shiba, K.; Yudasaka, M. ACS Nano 2009, 3, (6), 1399-1406.
    57. Itoh, T.; Urita, K.; Bekyarova, E.; Arai, M.; Yudasaka, M.; Iijima, S.; Ohba, T.; Kaneko, K.; Kanoh, H. Journal of Colloid and Interface Science 2008, 322, (1), 209-214.
    58. Aoki, Y.; Urita, K.; Noguchi, D.; Itoh, T.; Kanoh, H.; Ohba, T.; Yudasaka, M.; Iijima, S.; Kaneko, K. Chemical Physics Letters 2009, 482, (4–6), 269-273.
    59. Deshmukh, A. B.; Shelke, M. V. RSC Advances 2013, 3, (44), 21390-21393.
    60. Niu, B.; Xu, W.; Guo, Z.; Zhou, N.; Liu, Y.; Shi, Z.; Lian, Y. Journal of Nanoscience and Nanotechnology 2012, 12, (9), 7376-7381.
    61. Ha, H.-W.; Kim, I. Y.; Hwang, S.-J.; Ruoff, R. S. Electrochemical and Solid-State Letters 2011, 14, (7), B70-B73.
    62. Yang, D.-Q.; Sun, S.; Dodelet, J.-P.; Sacher, E. The Journal of Physical Chemistry C 2008, 112, (31), 11717-11721.
    63. Tang, S.; Sun, G.; Qi, J.; Sun, S.; Guo, J.; Xin, Q.; Haarberg, G. M. Chinese Journal of Catalysis 2010, 31, (1), 12-17.
    64. Zhao, M.; Sun, L.; Crooks, R. M. Journal of the American Chemical Society 1998, 120, (19), 4877-4878.
    65. Scott, R. W. J.; Wilson, O. M.; Crooks, R. M. The Journal of Physical Chemistry B 2004, 109, (2), 692-704.
    66. Buhleier, E.; Wehner, W.; VÖGtle, F. Synthesis 1978, 1978, (02), 155-158.
    67. Jackson, C. L.; Chanzy, H. D.; Booy, F. P.; Drake, B. J.; Tomalia, D. A.; Bauer, B. J.; Amis, E. J. Macromolecules 1998, 31, (18), 6259-6265.
    68. Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chemical Reviews 1999, 99, (7), 1665-1688.
    69. Myers, V. S.; Weir, M. G.; Carino, E. V.; Yancey, D. F.; Pande, S.; Crooks, R. M. Chemical Science 2011, 2, (9), 1632-1646.
    70. Crooks, R. M.; Zhao, M. Advanced Materials 1999, 11, (3), 217-220.
    71. Zhao, M.; Crooks, R. M. Angewandte Chemie International Edition 1999, 38, (3), 364-366.
    72. Gröhn, F.; Bauer, B. J.; Akpalu, Y. A.; Jackson, C. L.; Amis, E. J. Macromolecules 2000, 33, (16), 6042-6050.
    73. Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. Accounts of Chemical Research 2000, 34, (3), 181-190.
    74. Shao, N.; Su, Y.; Hu, J.; Zhang, J.; Zhang, H.; Cheng, Y. International Journal of Nanomedicine 2011, 6, 3361-3372.
    75. Chen, A.; Holt-Hindle, P. Chemical Reviews 2010, 110, (6), 3767-3804.
    76. Aricò, A. S.; Baglio, V.; Antonucci, V., Direct Methanol Fuel Cells: History, Status and Perspectives. In Electrocatalysis of Direct Methanol Fuel Cells, Wiley-VCH Verlag GmbH & Co. KGaA: 2009; pp 1-78.
    77. Siriviriyanun, A.; Imae, T. Physical Chemistry Chemical Physics 2013, 15, (14), 4921-4929.
    78. Wee, J.-H.; Lee, K.-Y.; Kim, S. H. Journal of Power Sources 2007, 165, (2), 667-677.
    79. Ye, H.; Scott, R. W. J.; Crooks, R. M. Langmuir 2004, 20, (7), 2915-2920.
    80. Siriviriyanun, A.; Imae, T. Physical Chemistry Chemical Physics 2012, 14, (30), 10622-10630.
    81. www.dendritech.com/pamam.html (June 2014)
    82. Ozturk, O.; Black, T. J.; Perrine, K.; Pizzolato, K.; Williams, C. T.; Parsons, F. W.; Ratliff, J. S.; Gao, J.; Murphy, C. J.; Xie, H.; Ploehn, H. J.; Chen, D. A. Langmuir 2005, 21, (9), 3998-4006.
    83. Tokuhisa, H.; Zhao, M.; Baker, L. A.; Phan, V. T.; Dermody, D. L.; Garcia, M. E.; Peez, R. F.; Crooks, R. M.; Mayer, T. M. Journal of the American Chemical Society 1998, 120, (18), 4492-4501.
    84. Chen, J. H.; Li, W. Z.; Wang, D. Z.; Yang, S. X.; Wen, J. G.; Ren, Z. F. Carbon 2002, 40, (8), 1193-1197.
    85. Hogarth, M. P.; Hards, G. A. Platinum Metals Review 1996, 40, (4), 150-159.
    86. Antolini, E.; Lopes, T.; Gonzalez, E. R. Journal of Alloys and Compounds 2008, 461, (1–2), 253-262.
    87. Dong, L.; Gari, R. R. S.; Li, Z.; Craig, M. M.; Hou, S. Carbon 2010, 48, (3), 781-787.
    88. Mancharan, R.; Goodenough, J. B. Journal of Materials Chemistry 1992, 2, (8), 875-887.
    89. Huang, J.; Liu, Z.; He, C.; Gan, L. M. The Journal of Physical Chemistry B 2005, 109, (35), 16644-16649.
    90. www.scopus.com (June 2014)

    QR CODE