簡易檢索 / 詳目顯示

研究生: 劉恩宏
En-Hong Liu
論文名稱: 酸洗液對雞糞灰中回收磷的影響
Effect of acid eluants on the recovery of phosphorus from chicken manure incineration ash
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 何豐謀
Feng-Mao Ho
黃志彬
Chi-Pin Huang
顧洋
Young Ku
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 115
中文關鍵詞: 酸萃取雞糞飛灰羥磷灰石回收鳥糞石廢物
外文關鍵詞: Acid leaching, Chicken manure incineration ash (CMIA), Hydroxyapatite (HAP), Phosphorus, Recovery, Struvite, Waste
相關次數: 點閱:274下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磷是所有生物生長和發育的必需營養素,並且存在於大多數有機材料中。但是,它
    是不可再生的資源,而且即將耗盡。因此,從廢物中回收磷已成為當務之急。本研究的
    目的是從雞糞焚化飛灰中回收磷,因為雞糞飛灰的磷含量很高。本研究使用了酸萃取-
    鹼沉澱法。使用100 毫升的硝酸、鹽酸和硫酸萃取1 公克的雞糞飛灰,然後進行氨處
    理,將酸鹼值調節至6.0、7.0 和8.0,以獲得沉澱物。本研究探討了酸的種類以及酸鹼
    值對於沉澱的影響。使用硝酸和鹽酸時,有相似的萃取表現。但是,使用硫酸時因為硫
    酸鈣的生成,導致萃取率低於使用其他兩種酸的萃取率。將氨水加入鹽酸和硝酸萃取後
    得到的濾液進行的沉澱實驗中,觀察到相似的沉澱行為。在酸鹼值7.0 和8.0 時會形成
    羥磷灰石沉澱,而在酸鹼值6.0 時會檢測到褐鐵礦。在使用硫酸時,磷的沉澱效率比其
    他方法要低得多。在酸鹼值7.0 和8.0 時,從硫酸的萃取液產生的沉澱為鳥糞石和閃鋅
    礦。但是,酸鹼值6.0 下的沉澱物因為量太少而無法測量。沉澱物在1,073 K 的溫度下
    進行5 小時的鍛燒實驗,以增強結晶強度,也有助於判斷沉澱的純度。 我們也比較微
    波輔助的萃取實驗與傳統萃取,結果顯示,微波輔助萃取所需的時間與能源均比傳統的
    來的低,即可達到相同的溫度及萃取效率,明顯提升萃取的效能。


    Phosphorus is an essential nutrient for the growth and development of all organisms and is present in most organic materials. However, it is a non-renewable resource and it is predicted to be depleted in the century. Therefore, the recovery of phosphorus from wastes has become an imperative issue. The purpose of the study is to recover phosphorus from chicken manure incineration ash (CMIA), which is the residue after chicken manure is subject to incineration that contains high amount of phosphorus.
    The acid leaching – alkaline precipitation was used in the present study. Total of 100 mL of HNO3, HCl and H2SO4 were used, respectively, for leaching 1.0 g of CMIA and followed by ammonia addition. The eluants were adjusted to pH of 6.0, 7.0 and 8.0, respectively, to induce precipitation. The precipitation reactions as affected by different types of acid and pH value were investigated. Similar leaching behaviors of phosphorus from CMIA were observed when using HNO3 and HCl. However, the leaching efficiency in using H2SO4 was lower than those from other two kinds of acids. The difference was influenced by the formation of CaSO4 when using H2SO4. Similar precipitation behaviors were observed in the precipitation experiments of eluants using HNO3 and HCl. The precipitation of hydroxyapatite (Ca5(PO4)3OH) was formed at pH 7.0 and 8.0 while monetite (CaHPO4) was detected at pH 6.0. In using H2SO4, the precipitation efficiencies of P were lower than the others. The precipitates from H2SO4 eluants were identified as struvite and dittmarite at pH 7.0 and 8.0. However, precipitate at pH 6.0 was too little to be measured. Calcination of the precipitations at 1,073 K for 5 h was also conducted to intensify the crystallinity and examine the purity of the precipitates.

    摘要 I ABSTRACT II ACKNOWLEDGEMENT III LIST OF FIGURES VII LIST OF TABLES IX CHAPTER 1 1-1 1.1 Background 1-1 1.2 Objective 1-2 CHAPTER 2 2-1 2.1 Phosphorus 2-1 2.2 Removal and recovery of phosphate 2-3 2.2.1 Phosphorus contained in wastes 2-3 2.2.2 Processes for removal and recovery of phosphorus 2-5 2.2.3 Phosphorus by acid and base leaching 2-6 2.3 The characterization of hydroxyapatite and struvite 2-7 2.3.1 Hydroxyapatite (HAP) 2-7 2.3.2 Struvite 2-8 2.4 Calcination process 2-11 2.5 Microwave-assisted leaching 2-12 CHAPTER 3 3-1 3.1 Materials and reagents 3-1 3.2 Instrument 3-2 3.3 Methods 3-3 3.3.1 Experimental framework and procedures 3-3 3.3.2 Total metal content – Aqua-regia digestion (NIEA S321.63B) 3-3 3.3.3 Leaching process 3-4 3.3.4 Thermodynamic simulation software (PHREEQC) 3-4 3.3.5 Precipitation process 3-6 3.3.6 Wet chemical analysis 3-6 3.3.7 Calcination 3-7 3.3.8 Conventional leaching 3-7 3.3.9 Microwave-assisted leaching 3-7 3.4 Analysis procedure 3-11 3.4.1 pH meter 3-11 3.4.2 ICP-OES analysis 3-11 3.4.3 X-ray diffraction (XRD) 3-12 CHAPTER 4 4-1 4.1 Characterization of CMIA 4-1 4.1.1 Quantitative analysis 4-1 4.1.2 X-ray diffraction analysis 4-3 4.2 Leaching process 4-4 4.3 PHREEQC thermodynamic modeling 4-8 4.4 Precipitation process 4-10 4.4.1 Precipitates by alkaline treatment 4-10 4.4.2 Precipitates after calcination 4-14 4.4.3 Removal efficiency of P from the eluant 4-17 4.5 Wet chemical analysis 4-19 4.6 Conventional leaching 4-22 4.6.1 Kinetic study 4-22 4.7 Microwave-assisted leaching 4-24 4.7.1 Effect of acid concentration 4-24 4.7.2 Effect of microwave power 4-25 4.7.3 Effect of reaction time 4-26 4.7.4 Comparison of microwave-assisted with conventional leaching processes 4-27 CHAPTER 5 5-1 5.1 Conclusions 5-1 5.2 Recommendation 5-2 REFERENCE R-1 APPENDIX A A-1 PHREEQC Coding A-1 APPENDIX B B-1 CALIBRATION CURVE B-1 APPENDIX C C-1 EXPERIMENTAL DATA C-1

    Abbona, F., Boistelle, R. (1979). Growth morphology and crystal habit of struvite crystals (MgNH4PO4· 6 H2O). Journal of Crystal Growth, 46(3), 339-354.
    Abbona, F., Lundager, M. H. E., Boistelle, R. (1986). The initial phases of calcium and magnesium phosphates precipitated from solutions of high to medium concentrations. Journal of Crystal Growth, 74(3), 581-590.
    Adam, C., Peplinski, B., Michaelis, M., Kley, G., Simon, F.G. (2009). Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Management, 29(3), 1122-1128.
    Antonini, S., Arias, M. A., Eichert, T., Clemens, J. (2012). Greenhouse evaluation and environmental impact assessment of different urine-derived struvite fertilizers as phosphorus sources for plants. Chemosphere, 89(10), 1202-1210.
    Ashley, K., Cordell, D., Mavinic, D. (2011). A brief history of phosphorus: From the philosopher's stone to nutrient recovery and reuse. Chemosphere, 84(6), 737-746.
    Bhuiyan, M.I.H., Mavinic, D.S., Beckie, R.D. (2007). A solubility and thermodynamic study of struvite. Environmental Engineering, 28(9),1015-1026.
    Biswas, B. K., Inoue, K., Harada, H., Ohto, K., Kawakita, H. (2009). Leaching of phosphorus from incinerated sewage sludge ash by means of acid extraction followed by adsorption on orange waste gel. Journal of Environmental Sciences, 21(12), 1753-1760.
    Bohner, M. (2000). Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury, 31, 37-47.
    Britannica, E. (2020). Encyclopædia Britannica Online. Encyclopædia Britannica Inc., 2020.
    Che, X., Su, X., Chi, R., Yu, J. (2010). Microwave assisted atmospheric acid leaching of nickel from laterite ore. Rare Metals, 29(3), 327-332.
    Cooper, J., Lombardi, R., Boardman, D., Carliell-Marquet, C. (2011). The future distribution and production of global phosphate rock reserves. Resources, Conservation and Recycling, 57, 78-86.
    Cordell, D., Drangert, J. O., White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292-305.
    Cordell, D., White, S. (2011). Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability, 3(10), 2027-2049.
    Dallinger, D., Kappe, C. O. (2007). Microwave-assisted synthesis in water as solvent. Chemical Reviews 107(6), 2563-2591.
    Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (Eds.). (2010). Springer Handbook of Crystal Growth. Springer Science & Business Media, Würzburg.
    Donatello, S., Tong, D., Cheeseman, C.R. (2010). Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA). Waste Management, 30 (8-9), 1634–1642.
    Dorozhkin, S. V. (2011). Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter, 1(2), 121-164.
    Dorozhkin, S. V. (2013). A detailed history of calcium orthophosphates from 1770s till 1950. Materials Science and Engineering: C, 33(6), 3085-3110.
    Doyle, J. D., Parsons, S. A. (2002). Struvite formation, control and recovery. Water Research, 36(16), 3925-3940.
    Dutrizac, J, E. (2002). Calcium sulphate solubilities in simulated zinc processing solutions. Hydrometallurgy, 65(2-3), 109-135.
    Elliott, J. C. (1994). Structure and chemistry of the apatites and other calcium orthophosphates. Studies in Inorganic Chemistry, 18, 1-389.
    Foy, A.M. (2016). The convention of georgic circumlocution and the proper use of human dung in Samuel Martin's essay upon plantership. Eighteenth-Century Studies, 49(4), 475-506.
    Gabriel, C., Gabriel, S., H. Grant, E., Halstead, B., Michael, P., Mingos D. (1998). Dielectric parameters relevant to microwave dielectric heating. Chemical Society Reviews, 27(3), 213.
    Gregory, T. M. (1974). Solubility of β-Ca3(PO4)2 in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25, and 37℃. Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry, 78(6), 667-674.
    Havukainen, J., Nguyen, M. T., Hermann, L., Horttanainen, M., Mikkilä, M., Deviatkin, I., Linnanen, L. (2016). Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment. Waste Management, 49, 221-229.
    Heughebaert, J. C., Nancollas, G. H. (1985). Solubility of octacalcium phosphate at 25 and 45. degree. C in the system calcium hydroxide-phosphoric acid-potassium nitrate-water. Journal of Chemical and Engineering Data, 30(3), 279-281.
    He, Z., Zhai, Q., Hu, M., Cao, C., Wang, J., Yang, H., Li, B. (2015). Bone cements for percutaneous vertebroplasty and balloon kyphoplasty: current status and future developments. Journal of Orthopaedic Translation, 3(1), 1-11.
    Johnsson, M. S. A., Nancollas, G. H. (1992). The role of brushite and octacalcium phosphate in apatite formation. Critical Reviews in Oral Biology and Medicine, 3(1), 61-82.
    Kaikake, K., Sekito, T., Dote, Y. (2009). Phosphate recovery from phosphorus-rich solution obtained from chicken manure incineration ash. Waste Management, 29(3), 1084-1088.
    Kalmykova, Y., Karlfeldt Fedje, K. (2013). Phosphorus recovery from municipal solid waste incineration fly ash. Waste Management, 33(6), 1403-1410.
    Kingston, H. M., Haswell, S. J. (1999). Microwave-enhanced chemistry. fundamentals, sample preparation and applications. Journal of American Chemical Society, 121(19), 4729.
    Kingston, H. M., Jessie, L. B. (1988). Introduction to Microwave Sample Preparation Theory and Practice. American Chemical Society, Washington D.C.
    Kordlaghari, M. P., Rowell, D. L. (2006). The role of gypsum in the reactions of phosphate with soils. Geoderma, 132(1-2), 105-115.
    Kumar, K. V., Khaddour, I. A., Gupta, V. K. (2010). A pseudo second-order kinetic expression for dissolution kinetic profiles of solids in solutions. Industrial and Engineering Chemistry Research, 49(16), 7257–7262.
    Kuroda, K., Ichino, R., Okido, M., Takai, O. (2002). Effects of ion concentration and pH on hydroxyapatite deposition from aqueous solution onto titanium by the thermal substrate method. Journal of Biomedical Materials Research, 61(3), 354-359.
    Lazar, D. R. R., Cunha, S. M., Ussui, V., Fancio, E., de Lima, N. B., Bressiani, A. H. A. (2006). Effect of calcination conditions on phase formation of calcium phosphates ceramics synthesized by homogeneous precipitation. Materials Science Forum 530-513, 612-617.
    Lee, M., Kim, D. J. (2017). Identification of phosphorus forms in sewage sludge ash during acid pre-treatment for phosphorus recovery by chemical fractionation and spectroscopy. Journal of Industrial and Engineering Chemistry, 51, 64-70.
    Li, B., Huang, H. M., Boiarkina, I., Yu, W., Huang, Y. F., Wang, G. Q., Young, B. R. (2019). Phosphorus recovery through struvite crystallisation: Recent developments in the understanding of operational factors. Journal of Environmental Management, 248, 109254.
    Liu, C., Huang, Y., Shen, W., Cui, J. (2001). Kinetics of hydroxyapatite precipitation at pH 10 to 11. Biomaterials, 22(4), 301-306.
    Liu, Y. (2017). Speciation and mobility of phosphate in the eutrophic ponds at Prospect Park, Brooklyn, New York, USA. Journal of Geoscience and Environment Protection, 5(06), 26.
    Liu, Y., Sheng, X., Dong, Y., Ma, Y. (2012). Removal of high-concentration phosphate by calcite: effect of sulfate and pH. Desalination, 289, 66-71.
    Madakkaruppan, V., Pius, A., Sreenivas, T., Giri, N. Sarbajna, C. (2016). Influence of microwaves on the leaching kinetics of uraninite from a low grade ore in dilute sulfuric acid. Journal of Hazardous Materials, 313, 9–17.
    Martí, N., Barat, R., Seco, A., Pastor, L., Bouzas, A. (2017). Sludge management modeling to enhance P-recovery as struvite in wastewater treatment plants. Journal of Environmental Management, 196, 340-346.
    Marti, N., Bouzas, A., Seco, A., Ferrer, J. (2008). Struvite precipitation assessment in anaerobic digestion processes. Chemical Engineering Journal, 141(1-3),67-74.
    McDowell, H., Gregory, T. M., Brown, W. E. (1977). Solubility of Ca5(PO4)3OH in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25, and 37 C. Journal of Research of the National Bureau of Standards, Section A. Physics and Chemistry, 81(2–3), 273-281.
    Meredith, R.J., (1998). Engineers’ Handbook of Industrial Microwave Heating/Roger Meredith. Institution of Electrical Engineers, London
    Mingos, D. M. P., Baghurst, D. R. (1991). Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chemical Reviews, 20, 1-47.
    Montastruc, L., Azzaro-Pantel, C., Biscans, B., Cabassud, M., Domenech, S. (2003). A thermochemical approach for calcium phosphate precipitation modeling in a pellet reactor. Chemical Engineering Journal, 94(1), 41-50.
    Moreno, E. C., Brown, W. E., Osborn, G. (1960). Stability of dicalcium phosphate dihydrate in aqueous solutions and solubility of octocalcium phosphate. Soil Science Society of America Journal, 24(2), 99-102.
    Musvoto, E. V., Wentzel, M. C., Ekama, G. A. (2000). Integrated chemical–physical processes modelling—II. simulating aeration treatment of anaerobic digester supernatants. Water Research, 34(6), 1868-1880.
    Nakasaki, K. (2014). Phosphorus recovery from chicken droppings treated with advanced composting techniques. Agriculture and Horticulture, 89, 524-530.
    Oshita, K., Iwashita, M., Takaoka, M., Takeda, N. (2003). Basic study on wet extraction processing of phosphorus from sewage sludge ash. Environmental Engineering Research, 40, 395-404.
    Peng, L., Dai, H., Wu, Y., Peng, Y., Lu, X. (2018). A comprehensive review of phosphorus recovery from wastewater by crystallization processes.Chemosphere, 197, 768-781.
    Pettersson, A., Amand, L. E., Steenari, B. M. (2008). Leaching of ashes from co-combustion of sewage sludge and wood, Part I: Recovery of phosphorus.Biomass and Bioenergy, 32(3), 224-235.
    Petzet, S., Peplinski, B., Bodkhe, S. Y., Cornel, P. (2011). Recovery of phosphorus and aluminium from sewage sludge ash by a new wet chemical elution process (SESAL-Phos-recovery process). Water Science and Technology, 64(3), 693-699.
    Petzet, S., Peplinski, B., Cornel, P. (2012). On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water research, 46(12), 3769-3780.
    Plaza, C., Sanz, R., Clemente, C., Fernández, J. M., González, R., Polo, A., Colmenarejo, M. F., (2007). Greenhouse Evaluation of Struvite and Sludges from Municipal Wastewater Treatment Works as Phosphorus Sources for Plants. Journal of Agricultural and Food Chemistry, 55(20), 8206-8212.
    Prado Da Silva, M. H., Lima, J. H. C., Soares, G. A., Elias, C. N., de Andrade, M. C., Best, S. M., Gibson, I. R. (2001). Transformation of monetite to hydroxyapatite in bioactive coatings on titanium. Surface and Coatings Technology, 137(2-3), 270–276.
    Price, S. L. (2018). Is zeroth order crystal structure prediction (CSP_0) coming to maturity? What should we aim for in an ideal crystal structure prediction code?. Faraday Discussions, 211, 9-30.
    Rahman, M. M., Salleh, M. A. M., Rashid, U., Ahsan, A., Hossain, M. M., Ra, C.S. (2014). Production of slow release crystal fertilizer from wastewaters through struvite crystallization – A review. Arabian Journal of Chemistry, 7(1), 139-155.
    Rolewicz, M., Rusek, P., Mikos-Szymańska, M., Cichy, B., Dawidowicz, M. (2016). Obtaining of suspension fertilizers from incinerated sewage sludge ashes (ISSA) by a method of solubilization of phosphorus compounds by bacillus megaterium bacteria. Waste and Biomass Valorization,7(4), 871–877.
    Ryu, H. D., Lim, C. S., Kang, M. K., Lee, S. I. (2012). Evaluation of struvite obtained from semiconductor wastewater as a fertilizer in cultivating Chinese cabbage. Journal of Hazardous Materials, 221-222, 248-255.
    Shih, K., Yan, H. (2016). The crystallization of struvite and its analog (k-struvite) from waste streams for nutrient recycling. Environmental Materials and Waste, 665-686.
    Song, Y., Hahn, H. H., Hoffmann, E. (2002). The effect of carbonate on the precipitation of calcium phosphate. Environmental Technology, 23(2), 207-215.
    Sturm, G., Weigand, H., Marb, C., Weiss, W., Huwe, B. (2010). Electrokinetic phosphorus recovery from packed beds of sewage sludge ash: yield and energy demand. Journal of Applied Electrochemistry, 40(6), 1069-1078.
    Sugiyama, S., Minami, T., Moriga, T., Hayashi, H., Moffat, J. B. (1998). Calcium-lead hydroxyapatites: Thermal and structure properties and the oxidation of methane. Journal of Solid State Chemistry, 135(1), 86-95.
    Sugiyama, S., Wakisaka, K., Imanishi, K., Kurashina, M., Shimoda, N., Katoh, K., Liu, J.-C (2019). Recovery of phosphate rock equivalents from incineration ash of chicken manure by elution-precipitation treatment. Journal of Chemical Engineering of Japan, 52(9), 778-782.
    Sugiyama, S., Kitora, R., Kinoshita, H., Nakagawa, K., Katoh, M., Nakasaki, K. (2016). Recovery of calcium phosphates from composted chicken manure. Journal of Chemical Engineering of Japan, 49(2), 224-228.
    Sugiyama, S., Yokoyama, M., Ishizuka, H., Sotowa, K. I., Tomida, T., Shigemoto, N. (2005). Removal of aqueous ammonium with magnesium phosphates obtained from the ammonium-elimination of magnesium ammonium phosphate. Journal of Colloid and Interface Science, 292(1), 133-138.
    Sun, D., Hale, L., Kar, G., Soolanayakanahally, R., Adl, S. (2018). Phosphorus recovery and reuse by pyrolysis: Applications for agriculture and environment. Chemosphere, 194, 682-691.
    Sutter, J. R., McDowell, H., Brown, W. E. (1971). Solubility study of calcium hydrogen phosphate. Ion-pair formation. Inorganic Chemistry, 10(8), 1638-1643.
    Suzuki, O. (2013). Octacalcium phosphate (OCP)-based bone substitute materials. Japanese Dental Science Review, 49(2), 58-71.
    Talboys, P. J., Heppell, J., Roose, T., Healey, J. R., Jones, D. L.,Withers, P. J. (2016). Struvite: a slow-release fertilizer for sustainable phosphorus management?. Plant Soil, 401(1-2), 109-123.
    Toyama, T., Kameda, S., Nihsimiya, N. (2013). Synthesis of sulfate-ion-substituted hydroxyapatite from amorphous calcium phosphate. Bioceramics Development and Applications S, 1, 1-3.
    Uludag-Demirer, S., Othman, M. (2009). Removal of ammonium and phosphate from the supernatant of anaerobically digested waste activated sludge by chemical precipitation. Bioresource Technology, 100(13), 3236-3244.
    Vereš, J., Lovás, M., Jakabský, Š., Šepelák V., Hredzák, S. (2012). Characterization of blast furnace sludge and removal of zinc by microwave assisted extraction. Hydrometallurgy, 129-130, 67-73.
    Wang, L., Nancollas, G. H. (2008). Calcium orthophosphates: crystallization and dissolution. Chemical Reviews, 108(11), 4628-4669.
    Wang, Q., Li, J., Tang, P., Fang, L., Poon, C. S. (2018). Sustainable reclamation of phosphorus from incinerated sewage sludge ash as value-added struvite by chemical extraction, purification and crystallization. Journal of Cleaner Production, 181, 717-725.
    Watanabe, T., Asai, M., Kondo, T., Shimizu, M., Takeuchi, Y., Aramaki, H., Naito, M. (1996). An advanced fluidized-bed swirl incinerator for dioxin control during municipal waste disposal. Chemosphere, 32(1), 177-187.
    Wajima, T., Rakovan, J. F. (2013). Removal behavior of phosphate from aqueous solution by calcined paper sludge. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 435, 132-138.
    Wen, T., Zhao, Y., Xiao, Q., Ma, Q., Kang, S., Li, H., Song, S. (2017). Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy. Results in Physics, 7, 2594-2600.
    Yetilmezsoy, K., Sapci-Zengin, Z. (2009). Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. Journal of Hazardous Materials, 166(1), 260-269.
    Ye, Y., Ngo, H. H., Guo, W., Liu, Y., Li, J., Liu, Y., Zhang, X., Jia, H. (2017). Insight into chemical phosphate recovery from municipal wastewater. Science of the Total Environment, 576, 159-171.
    Zimmermann, J., Dott, W. (2009). Sequenced bioleaching and bioaccumulation of phosphorus from sludge combustion – a new way of resource reclaiming. Advanced Materials Research, 71-73, 625-628.

    QR CODE