簡易檢索 / 詳目顯示

研究生: 劉冠甫
Guan-fu Liu
論文名稱: 銻砷化鎵/砷化鎵與銻砷化鎵/磷砷化鎵應力量子井之光學特性
Optical characterization of GaAsSb/GaAs and GaAsSb/GaAsP strained quantum wells
指導教授: 黃鶯聲
Ying-Sheng Huang
口試委員: 何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
程光蛟
Kwong-Kau Tiong
趙良君
Liang-Jun Zhao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 115
中文關鍵詞: 銻砷化鎵/磷砷化鎵砷化鎵/磷砷化鎵量子井應力補償量子井
外文關鍵詞: GaAsSb/GaAs, GaAs/GaAsP, quantum well, strain compensated QW
相關次數: 點閱:194下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文中,我們主要以光激螢光光譜(photoluminescence, PL)、表面光電壓光譜(surface photovoltage spectroscopy, SPV)、無接點電電場調製反射光譜(contantless electroerflectance, CER)、壓電調制反射光譜(peizoreflectance, PzR)暨光子調制反射光譜(photoreflectance, PR)量測技術探討壓縮應力銻砷化鎵/砷化鎵量子井(GaAs1-xSbx/GaAs QW)及應力補償型銻砷化鎵/磷砷化鎵量子井(GaAs1-xSbx/GaAs1-xPx QW)之光學特性。所量測的量子井樣品係利用有機金屬化學氣相沉積法(metal organic vapor phase epitaxy, MOVPE)成長於砷化鎵基板之上。從光激發螢光光譜實驗結果中,可以觀察到各個樣品基態1e-1hh的訊號,亦可發現加入磷砷化鎵位障層之樣品會有較強的發光強度。從低溫下之激發源功率相依之光激發螢光光譜實驗中,也可佐證在較高銻含量的GaAsSb/GaAs量子井峰值會隨著激發功率的增加,會有明顯的藍移,使吾人可以判定此樣品為第二型量子井能帶結構,而在GaAsSb/GaAsP的樣品則有較小的藍移,為第一型量子井能帶結構,發光特性較佳。另外藉由調製反射光譜與表面光電壓光譜觀測到量子井中可能的光學躍遷訊號之外,同時可量測到從位能障受應力分裂輕電洞(LH)與重電洞(HH)的訊號,得以直接利用於理論計算。從比對實驗結果與量子井理論計算,我們可以確認出所有激子躍遷信號的能量位置,並得到各個樣品量子井中應力的相關信息以及能隙補償差(conduction band offset, Qc)的大小,並從結果可以觀察到,加入磷砷化鎵位障層的樣品會有較大的應力釋放以及較高的導電帶高度。


    A detailed optical characterization of compressive-strained GaAs1-xSbx/GaAs and strain-compensated GaAs1-xSbx/GaAs1-yPy triple quantum well (TQW) structures grown by metal organic vapor phase epitaxy (MOVPE) has been carried out by using photoluminescence (PL), surface photovoltage spectroscopy (SPS), and modulation spectroscopy. For GaAs1-xSbx/GaAs TQW with Sb content x=0.36, only a very weak photoreflectance (PR) feature is observed in the vicinity of fundamental transition and large blue shifts of the PL peak position with increasing of excitation power density, which has been attributed to a weakly type-II heterojunction formed between GaAsSb and GaAs. The PR and SPS spectra of GaAsSb/GaAsP TQW display a series of features originated from interband transitions which is a typical characteristic of type-I QW structure. Utilizing the experimentally deduced GaAsP conduction to heavy- and light-hole band gap energies, we can make an unambiguous determination in the barrier heights for the heavy hole and light hole wells. In order to identify the observed intersubband excitonic transitions, a strain compensation factor r and conduction band offset Qc are used as the parameters for theoretical calculations. The obtained value of r and Qc are found to be Sb content dependent. The results indicate that the energy band of strain-compensated QW structures is significantly influenced by replacing GaAs with GaAsP barriers, which improve the electron confinement and reduce the compressive strain of the well. The strain-compensated GaAsSb/GaAsP TQWs have a larger overlap integral and hence a higher transition probability, providing a possibility for fabricating high efficiency near infrared laser diodes.

    目錄 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 5 1.3 論文架構 7 第二章 樣品結構與介紹 8 2.1銻砷化鎵/砷化鎵量子井之基本介紹 8 2.1.1銻砷化鎵/砷化鎵量子井之基本介紹 8 2.1.2 GaAs1-x Sbx的基本性質 9 2.2砷化鎵/磷砷化鎵量子井之基本介紹 13 2.2.1 砷化鎵/磷砷化鎵量子井之基本介紹 13 2.2.2 GaAs1-x Px的基本性質 13 2.3銻砷化鎵/磷砷化鎵應力補償型量子井之基本介紹 17 2.4 樣品結構資訊 18 第三章、調制光譜理論及量測技術 24 3.1調制光譜相關理論 24 3.1.1 前言 24 3.1.2 反射率與介電函數之關係 25 3.1.3 壓電調制理論 27 3.2調制光譜及極化量測技巧 31 3.2.1調制光譜量測 31 3.3調制光譜系統概述 32 3.3 光激發螢光光譜量測 39 3.3.1 光激發螢光光譜原理 39 3.3.2 PL實驗方法與系統架構 41 3.4 表面光電壓光譜量測 44 3.4.1 表面光電壓實驗原理 44 3.4.2 表面電子結構 45 3.4.3 表面光伏打效應 45 3.4.4 SPV實驗方法與系統架構 47 第四章 結果與討論 50 4.1 樣品A 砷化鎵/磷砷化鎵量子井之實驗結果 50 4.2 樣品B與C銻砷化鎵/砷化鎵量子井之實驗結果 64 4.3 樣品D與E銻砷化鎵/磷砷化鎵量子井之實驗結果 82 第五章 結論 96

    [1] H. Shimizu, K. Kumada, C. Setiagung, M. Ariga, K. Kumada, T. Hama, N. Ueda, N. Iwai, and A. Kasukawa, “1.3 μm range GaInNAsSb-GaAs VCSELs,” IEEE. J. Sel. Topics. Quantum Electron, vol. 9, pp. 1214-1219, 2003.
    [2] J. A. Lott, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Multiple stack of InAs-InGaAs quantum dots for GaAs-Based 1.3μm vertical cavity surface emitting lasers,” IEEE 16th Annual Meeting, vol. 2, pp. 499-500, 2003.
    [3] S. W. Ryu, and P. D. Dapkus, “Low threshold current density GaAsSb quantum well (QW) lasers grown by metal organic chemical vapour deposition on GaAs substrates,” IEEE Electron. Lett., vol 36, pp. 1387-1388, 2000.
    [4] P. Sundgren, R. Wurtemberg, J. Berggren, M. Hammar, M. Ghisoni, V. Oscarsson, E. Odling, and J. Malmquist, “High-performance 1.3μm InGaAs vertical cavity surface emitting lasers,” Electron. Lett., vol. 39, pp. 1128-1129, 2003.
    [5] C. H. Kuo, Y. H. Chang, Y. A. Chang, I. F. Lai, J. T. Chu, M. Y. Tsai and S. C. Wang, “Single-Mode 1.27μm InGaAs : Sb-GaAs-GaAsP quantum well vertical cavity surface emitting lasers,” IEEE. J. Sel. Topics. Quantum Electron, vol. 11, pp. 121-126, 2005.
    [6] Z. Pan, L. H. Li, Y. W. Lin, B. Q. Sun, D. S. Jiang, and W. K. Ge, “Conduction band offset and electron effective mass in GaInNAs/GaAs quantum-well structure with low concentration,” Appl. Phys. Lett., vol.78, pp. 2217-2219, 2001.
    [7] H. Zhao, R. A. Arif, Y. K. Ee, and N. Tansu, “Optical gain and spontaneous emission of strain-compensated InGaN-AlGaN quantum wells including carrier screening effect,” SPIE, vol. 6889, pp. 688903-1 – 688903-102, 2008.
    [8] P. Sitarek, H. P. Hsu, Y. S. Huang, J. M. Lin, H. H. Lin, and K. K. Tiong, “Optical studies of Type-I GaAs1-xSbx/GaAs multiple quantum well structures,” J. Appl. Phys., vol. 105, pp. 123523-1∼123523-4, 2009.
    [9] Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, “Properties of photoluminescence in Type-II GaAsSb/GaAs multiple quantum wells,” J. Appl. Phys., vol. 92, pp. 5810-5813, 2002.
    [10] T. T. Chen, C. H. Chen, W. Z. Cheng, W. S. Su, M. H. Ya, Y. F. Chen, P. W. Liu, and H. H. Lin, “Optical studies of strained Type-II GaAs0.7Sb0.3/GaAs multiple quantum wells,” J. Appl. Phy., vol. 93, pp. 9655-9658, 2003.
    [11] R. Teissier, D. Sicault, J. C. Harmand, G. Ungaro, G. L. Roux, and L. Largeau, “Temperature-dependent valence band offset and band-gap energies of pseudomorphic GaAsSb on GaAs,” J. Appl. Phys., vol. 89, pp. 5473-5477, 2001.
    [12] M. Dinu, J. E. Cunningham, F. Quochi, and J Shah, “Optical properties of strained antimonide-based heterostructures,” J. Appl. Phys., vol. 94, pp. 1506-1512, 2003.
    [13] Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys., vol. 89, pp. 5819-5875, 2001.
    [14] H. Yaguchi, X. Zhang, K. Ota, M. Nagahara, K. Onabe, Y. Shiraki, and R. Ito, “ Photoreflectance study of GaAs/GaAsP strained-barrier quantum well Structures,” Jpn. J. Appl. Phys., vol. 32, pp. 544-547, 1993.
    [15] K. H. Sim, C.Y. Chan, and E. Li, “Optical properties of tensile-strained barrier GaAsP/GaAs intermixed quantum well structure,” SPIE , vol. 3625, pp. 544-547, 1993.
    [16] L. Malikova, F. H. Pollak, O. GOREA, and A. Korotcov, “Modulation spectroscopy study of a strained layer GaAs/GaAsP multiple quantum well structure,” J . Electron. Mater., vol. 29, pp. 1346-1350, 2000.
    [17] X. Yin, X. Guo, F. H. Pollak, G. D. Petitt, J. M. Woodall, T. P. Chen, and C. W. Tu, “Nature of band bending at semiconductor surfaces by contactles electroreflectance,” Appl. Phys. Lett., vol. 60, pp. 1336-1338,1992.
    [18] B. O. Seraphin, “The effect of an electric field on reflectivity of germanium,” Proc. 7th Int. Conf. Phys. Semicond., ed. By M. Hulin, Academic, Dunod, Paris, 1964.
    [19] F. H. Pollak and H. Shen, “Modulation spectroscopy of semiconductor : bulk/thin film, microstructures, surface/interface devices,” Mater. Sci. and Eng. R, pp. 275-374, 1993.
    [20] H. Mathieu, J. Allegre, and B. Gil, “Piezomodulation spectroscopy : A powerful investigation tool of heterostructures,” Phys. Rev. B, vol. 43, pp. 2218-2227 , 1991.
    [21] R. L. Tober, A. L. Smirl, T. F. Boggess, and J. N. Schulman “Piezo-reflectance as a supplement to photoreflectance for nondestructive characterization of GaAs/AlxGa1-xAs multiple quantum wells,” J. Appl. Phys., vol. 64, pp. 4678-4682, 1988.
    [22] D. K. Schroder, “Surface voltage and surface photovoltage: history, theory and applications,” meas. Sci. Technol., vol. 12, pp. R16-R31, 2001.
    [23] H. Shen, M. Dutta, R. Lux, W. Buchwald, L. Fotiadis, and R. N. Sacks, “Dynamics of photoreflectance form undoped GaAs,” Appl. Phys. Lett., vol. 59, pp. 321-323, 1991.
    [24] H. Shen, P. Parayanthal, Y. F. Liu, and F. H. Pollak, “New normalization procedure for modulation spectroscopy,” Rev. Sci. Instrum., vol. 58, pp. 1429-1432 , 1987.
    [25] L. Kronik and Y. Shapira, “Surface photovoltage phenomena : theory, experiment, and applications,” Surf. Sci. Reports, vol. 37, pp. 1-206, 1999.
    [26] Y. Shapira, L. Brillson, and A. Heller, “Origin of surface and metal-induced interface states in InP,” Phys. Rev. B, vol. 29, pp. 6824 – 6832, 1984.
    [27] H. Lüth, M. Büchel, R. Dorn, M. Liehr, and R. Matz, “Electronic structure of cleaved clean and oxygen-covered GaAs (110) surfaces,” Phys. Rev. B, vol. 15, pp. 865-874, 1997.
    [28] N. Bachrach-Ashkenasy, L. Kronik, Y. Shapira, Y. Rosenwaks, M. C. Hanna, M. Leibovitch, and P. Ram, “Surface photovoltage spectroscopy of quantum wells and superlattices,” Appl. Phys. Lett., vol. 68, pp. 879-881, 1996.
    [29] L. Aigoui, F. H. Pollak, Petruzello, J. Petruzzello, and K. Shahzad, “Observation of excitonic features in ZnSe/ZnMgSSe multiple quantum wells by normalized Kelvin probe spectroscopy at low temperatures,” Solid State Comm., vol. 102, pp. 877-882, 1997.
    [30] B. Mishori, M. Leibovitch, Y. Shapira, F. H. Pollak, D. C. Streit, and M. Woitowicz, “Surface photovoltage spectroscopy of a GaAs/AlGaAs heterojunction bipolar transistor,” Appl. Phys. Lett., vol. 73, pp. 650-652, 1998.
    [31] Y. S. Huang, L. Malikova, F. H. Pollak, H. Shen, J. Pamulapati, and P. Newman, “Surface photovoltage spectroscopy, photoreflectance, and reflectivity characterization of an InGaAs/GaAs/GaAlAs vertical-cavity surface-emitting laser including temperature dependent,” Appl. Phys. Lett., vol. 77, pp. 37–39, 2000.
    [32] N. Ashkenasy, M. Leibovitch, Y. Shapira, F. H. Pollak, G. T. Bumham, and X. Wang, “ Surface photovoltage spectroscopy of InGaAs/GaAs/AlGaAs single quantum well laser structure,” J. Appl. Phys., vol. 83, pp. 1146–1149, 1998.
    [33] R. Kudrawiec, L. Bryja, J. Misiewicz, and A. Forchel, “Temperature evolution of photoluminescence from an In0.22Ga0.78Sb/GaSb single quantum well,” Mater. Sci. Eng. B, vol. 110, pp.42-45, 2004.
    [34] L. Malikova, F. H. Pollak, O. Gorea, and A. Korotcov, “Modulation spectroscopy study of a strained layer GaAs/GaAsP multiple quantum well structure,” J. Electron Mater., vol. 29, pp.1346-1350, 2000.
    [35] M. Dinu, J. E. Cunningham, F. Quochi, and J. Shah, “Optical properties of strained antimonide-based heterostructures,” J. Appl. Phys., vol. 94, pp. 1506-1512 , 2003.
    [36] Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, “Properties of photoluminescence in Type-II GaAsSb/GaAs Multiple Quantum Wells,” J. Appl. Phys., vol. 92, pp. 5810-5813, 2002.
    [37] C. M. Lin and Y. F. Chen, “Properties of photoluminescence in Type-II ZnMnSe/ZnSeTe multiple quantum wells,” Appl. Phys. Lett., vol. 85, pp. 2544-2546, 2004.
    [38] S. R. Johnson, C. Z. Guo, S. Chaparro, Y. G. Sadofyev, J. Wang, Y. Cao, N. Samal, J. Xu , S. Q. Yu, D. Ding, and Y. H. Zhang, “GaAsSb/GaAs band aligment evaluation for long-wave photonic applications,” J. Cryst. Growth, vol. 251, p.p 521-525, 2003.
    [39] S. L. Chuang, Physics of Photonic Devices, 2nd ed. New Jersey: Jhon Wiley & Sons, 2009, pp. 449-451.

    QR CODE