簡易檢索 / 詳目顯示

研究生: 范綱宇
Gang-Yu Fan
論文名稱: 多自由度共面偵測式微型化干涉儀
Miniaturized Multi-Degree-of-Freedom Coplanar Detection Type Laser Interferometer
指導教授: 謝宏麟
Hung-Lin Hsieh
口試委員: 李朱育
Ju-Yi Lee
鄧昭瑞
Geo-Ry Tang
許正治
Cheng-Chih Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 218
中文關鍵詞: 光柵干涉儀共面偵測高解析度位移旋轉角幾何誤差
外文關鍵詞: Grating interferometer, Coplanar detection type, High resolution, Displacement, Rotation angle, Geometric errors
相關次數: 點閱:277下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 Abstract 符號說明 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景 1.2 文獻回顧 1.2.1面外偵測式雷射干涉儀之文獻回顧 1.2.2面內偵測式雷射干涉儀之文獻回顧 1.2.3多自由度雷射干涉儀之文獻回顧 1.2.4共面偵測式雷射干涉儀之文獻回顧 1.2.5幾何誤差量測之文獻回顧 1.4 研究目的 1.5 論文架構 第二章 基礎理論 2.1光學干涉法 2.2同調干涉術 2.2.1拍頻效應與可偵測包絡 2.2.2.時間同調性 2.2.3.空間同調性 2.3同調式麥克森干涉儀 2.4光柵干涉術(雷射光學尺) 2.4.1都卜勒效應 2.4.2同調式光柵干涉儀 2.5線性光學尺 2.6幾何公差概念 2.6二極體雷射基本特性 2.7多自由度共面偵測光路量測技術 2.8多自由度量測技術 2.9同調訊號相位解調 2.10小結 第三章 共面偵測式微型化干涉儀之開發 3.1 單自由度共面偵測式微型化干涉儀之設計原理 3.1.1 Beam Displacer 之光學元件特性 3.1.2側向位移分光鏡(Lateral Displacement Non-Polarized Beamsplitter) 3.1.3共面偵測光路架構設計 3.2 雙自由度共面偵測式微型化干涉儀 3.3 四自由度共面偵測式微型化干涉儀 3.4 五自由度共面偵測式微型化干涉儀 3.5 3D列印光機模組 3.6 相位解調系統 3.7系統所用到之實驗儀器及光學元件 3.8 小結 第四章 實驗結果與討論 4.1單自由度位移(x)量測實驗 4.2雙自由度面外位移(z)量測實驗 4.3五自由度位移及旋轉角(x, z, θx, θy, θz)量測實驗 4.3.1大行程位移與旋轉角度量測實驗(x, z, θx, θy, θz) 4.3.2旋轉角(θx, θy, θz)量測實驗 4.3.3隨機波運動量測實驗 4.4量測系統性能、極限測試與討論 4.4.1解析度量測 4.4.2重複性量測 4.4.3靈敏度量測 4.4.4量測速度極限測試 4.4.5系統穩定度測試 4.4.6離焦偵測實驗 4.4.7直線度誤差量測 4.5小結 第五章 誤差分析 5.1系統誤差 5.1.1光源方位角偏差所造成之影響 5.1.2雷射二極體光強引起相位誤差 5.1.3 Beam Displacer消光比所造成之影響 5.1.4 Beam Displacer晶體內光程所造成之影響 5.1.5光柵對位誤差於位移量測系統中造成之影響 5.2隨機誤差 5.2.1外界環境振動 5.2.2電子雜訊誤差 5.2.3材料熱膨脹係數造成的影響 5.3小結 第六章 結論與討論 6.1結論 6.2未來展望 參考文獻 附錄

1. 麥克森干涉儀:https://pansci.asia/archives/119214
2. P. Gregorčič et al., “Quadrature phase-shift error analysis using a homodyne laser interferometer,” Measurement Science and Technology, pp. 665-669, 2010.
3. J. Ahn et al., “A passive method to compensate nonlinearity in a homodyne interferometer,” Optics Express, 17, pp. 23299-23308, 2009.
4. J. Lee et al., “High-resolution parallel multipass laser interferometer with an interference fringe spacing of 15 nm,” Optics Communications, 284, pp. 1118-1122, 2011.
5. H. K. Teng et al., “Heterodyne interferometer for displacement measurement with amplitude quadrature and noise suppression,” Optics communications, 280, pp. 16-22, 2007.
6. S. H. EANGH et al., “Balanced-path homodyne I/Q-interferometer scheme with very simple optical arrangement using a polarizing beam displacer,” Optics express, 25, pp. 8237-8244, 2017.
7. M. Pisani., “A homodyne Michelson interferometer with sub-picometer resolution,” Measurement Science and Technology, 20, pp. 84008, 2009.
8. H. Fu et al., “Nonlinear Errors Resulting from Ghost Reflection and Its Coupling with Optical Mixing in Heterodyne Laser Interferometers,” Optics Sensors, 18, pp. 758, 2018.
9. J. Yan et al., “Optimal design of the laser synthetic wavelength interferometer,” Optical Engineering, 55, pp. 91401, 2016.
10. 李瑞君等人,「一維奈米定位控制系統」,Optics Sensors, 第 47 卷第 10 期2018.
11. A. Zolfaghari et al., “A novel sensor for two-degree-of-freedom motion measurement of linear nanopositioning stage using knife edge displacement sensing technique,” Review of Scientific Instruments, 88, pp. 65110, 2017.
12. J. Y. Lee et al., “Displacement measurement using a wavelength-phase-shifting grating interferometer,” Optics express, 21 ,pp. 25553-25564, 2013.
13. C. F. Kao et al., “Diffractive Laser Encoder with a Grating in Littrow Configuration,” Japanese Journal of Applied Physics, 47, pp. 1833, 2008.
14. J. Y. Lee, H. L. Hsieh and Z. Y. Lin, “Heterodyne grating interferometry based on sinusoidal phase modulation for displacement measurement,” Proc. SPIE, 10329, pp.103293S, 2009.
15. Gillmer, Steven R et al., “Design considerations in a novel fiber-coupled three degree-of-freedom displacement interferometer,” Optomechanical Engineering,Vol.8836, International Society for Optics and Photonics, 2013.
16. X. Xing et al., “Spatially separated heterodyne grating interferometer for eliminating periodic nonlinear errors,” Optics express, pp. 31384-31393, 2017.
17. W. Gao et al., “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP annals, pp. 515-518, 2011.
18. A. Kimura et al., “Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness,” Precision Engineering, 34 , pp. 145-155, 2010.
19. Y. Shimizu et al., “Uncertainty analysis of a six-degree-of-freedom surface encoder for a planar motion stage,” Procedia CIRP, 75 ,pp. 355-360, 2018.
20. H. L. Hsieh and W. Chen, “Heterodyne Wollaston laser encoder for measurement of in-plane displacement,” Opt. Express, 24(8), pp.8693-8707, 2016.
21. U. Mutilba et al., “Traceability of On-Machine Tool Measurement,” Sensors, 17 ,pp. 1605, 2017.
22. Reinshaw:http://www.renishaw.com/en/renishaw-unveils-the-new-xm-60-multi-axis-calibrator--39275
23. ZYGO:https://www.zygo.com/?/met/markets/stageposition/zmi/laserheads/
24. Renishaw 雷射干涉儀操作手冊,明江貿易股份有限公司,2008.
25. J. Deng et al., “Eightfold optical encoder with high-density grating,” Applied optics, 57, pp. 2366-2375, 2018.
26. Q. LV et al., “A simple and compact grating-based heterodyne interferometer with the Littrow configuration for high-accuracy and long-range measurement of two-dimensional displacement,” Applied optics, 57, pp. 9455-9463, 2018.
27. H. L. Huang., “Development of a three-degree-of-freedom laser linear encoder for error measurement of a high precision stage,” Review of scientific instruments, 78, pp. 66103, 2007.
28. S. R. Gillmer., “Design considerations in a novel fiber-coupled three degree-of-freedom displacement interferometer,” International Society for Optics and Photonics, pp. 8836, 2013.
29. W. Gao et al., “A three-axis displacement sensor with nanometric resolution,” CIRP Ann., 56(1), pp.529-532, 2007.
30. C.Y. Fang et al., “Development of multi-function error calibration system for NC machine tools,” Proceedings of The 3rd ROC-ROK Metrology Symposium, Taipei, Taiwan, pp. 163–171, 1990.
31. J. Ni et al., “A multi-degree-of-freedom measuring system for CMM geometric errors,” ASME J. Eng. Ind, 114, pp.362–369, 1992.
32. S. Shimizu et al.,“Simultaneous measuring method of table motion errors in 6 degrees of freedom,” Int. J. Jpn. Soc. Prec. Eng , 28, pp.273–274, 1994.
33. K. C. Fan et al., “A six-degree-of-freedom measurement system for the motion accuracy of linear stages,” Int. J. Mach. Tools Manufact, 38, pp.155–164, 1998.
34. Q. Feng et al., “A straightness measurement system using a single-mode fiber-coupled laser module,” Optics & Laser Technology, 36, pp. 279 – 283, 2004.
35. C. Kuang et al., “A four-degree of freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sensors and Actuators A, 125, pp. 100–108, 2005
36. 劉宗翰,六自由度雷射干涉儀進行三軸CNC工具機的誤差量測,碩士論文,中華大學機械與航太工程研究所,2004。
37. T. T. Liao, “Modeling and analysis of laser shaft alignment using 4×4 homogeneous coordinate transformation matrix,” Measurement, 42, pp. 157–163, 2009.
38. S. J. Jeong et al., “Beam alignment with the axis of a rotation stage for laser fabrication of microcircular structures,” Optics & Laser Technology, 36, pp. 401 – 408, 2004.
39. Fajia Zheng et al., “A Method for Simultaneously Measuring 6DOF Geometric Motion Errors of Linear and Rotary Axes Using Lasers,” Optics Sensors, 19, pp. 1764, 2019.
40. J. S. Chen et al., “Geometric error calibration of multi-axis machines using an auto-alignment laser interferometer,” Precision Engineering, 23, pp. 243–252, 1999.
41. P. Shang et al., “High-resolution diffraction grating interferometric transducer of linear displacements,” Seventh International Symposium on Precision Mechanical Measurements, pp. 99031, 2016.
42. C. C. Hsu et al., “Prototype of a compact displacement sensor with a holographic
diffraction grating,” Optics & Laser Technology, 48, pp. 200-205, 2012.
43. G. Hermann., “Geometric Error Correction in Coordinate Measurement,” Acta Polytechnica Hungarica, 4, pp. 47-62, 2007.
44. 馮其波等人,激光多自由度测量方法综述,碩士論文,北京交通大学理学院,2000。
45. C. H. Liu et al., “Development of a laser-based high-precision six degree-of-freedom motion errors measurement system for linear stage,” Rev. Sci. Instrum., 76(5), p. 1–6, 2005.
46. I. Rahneberg et al., “Optical system for the simultaneous measurement of two-dimensional straightness errors and the roll angle,” Proceedings of SPIE - The International Society for Optical Engineering, pp.73560, 2009.
47. Huang, H . L et al., “Development of a three-degree-of-freedom laser linear encoder for error measurement of a high precision stage,” Review of Scientific Instruments, 78(6) , 2007.
48. C. H. Liu., “Five-degrees-of-freedom diffractive laser encoder,” Applied optics, 48, pp. 2767-2777, 2009.
49. H. L. Huang., “High-resolution three-degrees-of-freedom motion errors measuring system for a single-axis linear moving platform,” Journal of Engineering Manufacture, 223, pp. 107-114, 2009.
50. K. C. Fan., “A Miniature Three-angle Sensor for the Accuracy Improvement of Machine Tools,” International Conference on Mechatronics Technology, 2011.
51. C. Lee., “Design and construction of a single unitmulti-function optical encoder for asix-degree-of-freedom motion error measurement in an ultraprecision linear stage,” Measurement Science and Technology, 22, pp. 105901, 2011.
52. Huang, P. and J. Ni, Multi-degree-of-freedom geometric error measurement system. 1995, Google Patents.
53. H. Peisen et al., “Multi-degree-of-freedom geometric error measurement system,”U.S. Patent , pp.5418, 1995.
54. W. Gao., “A surface motor-driven planar motion stage integrated with an XYθZ surface encoder for precision positioning,” Precision Engineering, 28, pp. 329-337, 2004.
55. F. G. Balzer., “Tactile 3D microprobe system with exchangeable styli,” Measurement Science and Technology, 22, pp. 94018, 2011.
56. K. C. Fan., “A Planar Laser Diffraction Encoder in Littrow Configuration for 2D Nanometric Positioning,” International Journal of Automation and Smart Technology, 1, pp. 93-99, 2011.
57. K. C. Fan., “Double-diffraction planar encoder by conjugate optics,” Optical Engineering, 44, pp. 23603, 2005.
58. C. Fang., “Linear diffraction grating interferometer with high alignment tolerance and high accuracy,” Applied Optics , 50, pp. 4550-4556, 2011.
59. F. Cheng et al., “Linear diffraction grating interferometer with high alignment tolerance and high accuracy,” Applied Optics, 50 ,pp. 4550-4556, 2011.

無法下載圖示 全文公開日期 2024/08/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE