簡易檢索 / 詳目顯示

研究生: 康程為
Cheng-Wei Kang
論文名稱: WS2無機奈米材料製作與不同強化相對鋁基複合材料的機械性質及微觀組織影響之研究
WS2 inorganic nanomaterial fabrication and effect of different reinforcement on mechanical properties and microstructure of Al alloy metal matrix composites
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 王朝正
Chao-Jheng Wang
陳復國
Fu-Guo Chen
林柏州
Bo-Jhou Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 129
中文關鍵詞: WS2奈米管鋁基複合材料機械性質重力鑄造
外文關鍵詞: WS2 nanotube, Aluminum metal matrix composites, Mechanical property, gravity casting
相關次數: 點閱:252下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用化學氣相儀器製備WS2奈米管,並探討製備參數變化對生長WS2奈米管之影響。由於WS2奈米管擁有優良的機械性質,因此本研究將選用WS2奈米管為強化相材料之一。
    研究主要選用之強化相為WS2奈米管 (0.5wt. %、1wt. %) 、CNT奈米碳管 (0.5wt. %、1wt. %) 及SiC碳化矽顆粒 (0.5wt. %、1wt. %) ,對6061鋁合金在重力鑄造方式下進行攪拌製程來混合強化,並探討鋁基複合材料之機械性質和微觀結構。
    實驗中WS2奈米管的製造,主要參數變化在於增加石英載台、改變溫度、改變硫化氫氣體流速這三個不同參數來探討硫化反應後的產物。結果發現透過石英載台的添加,有助於提升奈米管的硫化反應,也使奈米管的直徑小於無添加石英載台之奈米管;而透過硫化氫氣體流速的增加,也發現氣體流速的增加並無明顯提升硫化效果,因此推測適當的硫化氫氣體就足以提供硫化過程之硫化氣氛;在溫度參數部分,溫度改變區間為890°C-900°C,每10°C為一組實驗,從結果得知,在890°C有較好的硫化效果和較好的奈米管形態,說明了這溫度環境有助於奈米管的生成。
    複合材料實驗結果顯示,6061鋁合金添加1wt.% WS2奈米管擁有較佳的抗拉強度與伸長量,分別提升了20.4%、73.1%,其強化提升原因推測,WS2奈米管在基材內會以橋接機制 (Bridging Mechanism) 的方式與基材連接,使負載能有效傳遞,進而有效提升機械性質。


    The proposed system is subjected to use chemical vapor equipment for the synthesis of WS2 nanotubes and it infers the changes in preparation parameter for the growth of nanotubes. This system utilizes to use WS2 nanotube as one of the reinforcement material due to its excellent mechanical property.
    The reinforcements selected for this work mainly uses WS2 nanotubes (0.5wt. %, 1wt. %), carbon nanotubes (0.5wt. %, 1wt. %) and silicon carbide particles (0.5wt. %, 1wt. %). It is to reinforce 6061 aluminum alloy with gravity casting method uses the stirring process. To examine the mechanical properties and microstructure of aluminum matrix composite materials.
    For the preparation of WS2 nanotubes in the experiment, there are mainly three different parameter changes to examine the products of sulfide reactions, including increasing quartz stage, increasing carbon cloths, changing the temperature and changing the flow rate of hydrogen sulfide. The results show that by adding to the quartz stage increases the nanotubes’ sulfide reaction and produces nanotubes with smaller diameters than nanotubes without added quartz stage. In terms of increasing the flow rate of hydrogen sulfide, the results show that the increase in flow rate does not significantly enhance the sulfide effect, therefore we speculate that an appropriate amount of sulfide gas provides sufficient hydrogen sulfide for the sulfurization process. As for temperature parameters, the temperature range is 890°C-900°C with one set of experiment for every 10°C. The results show that the 890°C produces better sulfurization results and better types of nanotube, which explains that environments with this temperature range is improves the making of nanotubes.
    Results from composite material experiments reveal that adding 1wt.% WS2 nanotubes to 6061 aluminum alloy results in better tensile strength and elongation, which are increased by 20.4% and 73.1%, respectively. We speculate that the reason for increased reinforcement is the bridging mechanism of the WS2 nanotubes which connects with the matrix to effectively transfer the load and thereby effectively increasing its mechanical properties.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 XI 表目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 本實驗室之複合材料熔煉製程 4 1.2.2 WS2奈米材料合成相關文獻 5 1.2.3 WS2奈米管之機械性質相關文獻 10 1.2.4 強化相對機械性質之影響 13 1.3 文獻整理心得 18 1.4 研究動機與目的 19 第二章 WS2奈米材料與鋁合金相關介紹 21 2.1 WS2奈米材料性質 21 2.2 化學氣相沉積法之無機奈米管 (WS2、MoS2) 合成方式 21 2.3 化學氣相沉積法之無機奈米管與富勒烯結構生長機制 24 2.3.1 富勒烯結構 (Fullerene) 25 2.3.2 奈米管結構 25 2.4 鋁合金基本性質 27 2.5 鋁合金之分類 28 2.6 6061鋁合金之簡介 30 2.6.1 添加不同金屬元素對鋁合金的影響 30 2.7 金屬材料之強化理論 32 2.7.1 晶粒細化強化 32 2.7.2 熱膨脹係數差異影響 33 2.7.3 Orowan強化與散佈強化 33 2.7.4 負荷影響 33 2.8 鋁合金鑄造 34 2.8.1 重力鑄造法 34 2.8.2 壓鑄法 34 2.8.3真空鑄造法 35 2.8.4 砂模鑄造法 35 第三章 實驗方法與步驟 36 3.1 實驗方式 36 3.2 實驗流程圖 37 3.3 實驗材料 38 3.3.1 WS2奈米管製備部分 38 3.3.2 鋁基複合材料製備部分 39 3.4 實驗設備 41 3.4.1 流化床反應爐 41 3.4.2 加熱區域 43 3.4.3流速控制單元 44 3.4.4 排氣過濾單元 45 3.4.5 成品收集設備 47 3.4.6 石英載台 47 3.4.7 熔煉爐 48 3.4.8 微型維克氏硬度機 (Micro-Vickers hardness tester) 51 3.4.9 動態拉伸試驗機 (Material Test system, MTS) 51 3.4.10 濕式自動研磨/拋光機 53 3.4.11 光學顯微鏡 (Optical Microscopy, OM) 54 3.4.12 高解析度場發射掃描式電子顯微鏡 (High Resolution Field-Emission Scanning Electron Microscope, FESEM) 54 3.4.13 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 56 3.4.14 X光繞射 (X-ray diffraction, XRD) 57 3.5 鋁基複合材料鑄造製程參數 59 3.6 WS2無機奈米管之製備步驟 59 3.5.1 第一階段:次氧化鎢 (WO3-x) 製備 59 3.5.2 第二階段:硫化鎢 (WS2) 奈米管製備 60 3.7 鋁基複合材料製備 61 3.8 複合材料試片製作與規劃 61 第四章 結果與討論 63 4.1 實驗合成WS2奈米管之分析 63 4.1.1 第一階段次氧化鎢合成 63 4.1.2 第二階段WS2奈米管合成 64 4.1.3 WS2奈米管合成分析 66 4.2 6061鋁基複合材料顯為組織分析 73 4.2.1 金相顯微結構分析 73 4.2.2 平均晶粒尺寸分析 76 4.3斷面結構分析 79 4.3.1 6061鋁合金添加SiC 79 4.3.2 6061鋁合金添加CNT 81 4.3.3 6061鋁合金添加WS2奈米管 84 4.4 各強化相對6061鋁基材料機械性質之分析 85 4.4.1 硬度試驗 85 4.4.2 拉伸試驗 86 4.4.3 拉伸後材料破斷面顯微結構分析 91 4.5 強化相貢獻度之分析 93 4.6 與文獻比較 100 第五章 結論 101 第六章 未來研究方向 103 參考文獻 104

    [1] I. K. Ashiri, S. R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H. D. Wagner, and R. Tenne, “On the mechanical behavior of WS2 nanotubes under axial tension and compression”, Proceedings of the National Academy of Sciences, 103, pp.523-528, 2005.
    [2] D. M. Tang, X. Wei, M. S. Wang, N. Kawamoto, Y. Bando, C. Zhi, M. Mitome, A. Zak, R. Tenne, and D. Golberg, “Revealing the anomalous tensile properties of WS2 nanotubes by in situ transmission electron microscopy”, Nano letters, 13, pp.1034-1040, 2013.
    [3] L. Rapoport, N. Fleischer, R. Tenne, “Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites”, J. Mater. Chem, 15, pp.1782–1788, 2005.
    [4] L. Rapoport, N. Fleischer, R. Tenne, “Fullerene-like WS2 nanoparticles: superior lubricants for harsh conditions”, Adv. Mater., 15, pp.1-5, 2003.
    [5] R. Tenne, L. Margulis, M. Genut and G. Hodes, “Polyhedral and cylindrical structures of tungsten disulphide”, Nature, 360, pp.444-446, 1992.
    [6] 吳懿璋, “強化相粒徑與含量對AZ61/SiCp鎂合金複合材料於擠製加工及後續退火製程在機械性質之研究”, 國立台灣科技大學機械工程學系碩士論文, 2014
    [7] 何佳翰, “AZ31/SiCp鎂基複合材料擠製板材之機械性質與成形性影響之探討”, 國立台灣科技大學機械工程學系碩士論文, 2014
    [8] 黃政揚, “WS2無機奈米管對鎂合金複合材料的機械性質與微觀組織影響之研究”, 國立台灣科技大學機械工程學系碩士論文, 2015
    [9] A. Zak, L. Sallacan-Ecker, A. Margolin and M. Genut, “Insight into the growth mechanism of WS2 nanotubes in the scaled-up fluidized-bed reactor”, Nano, 9, pp.91-98, 2009.
    [10] A. Margolin, R. Rosentsveig, A. Albu-Yaron, R. Popovitz-Biro and R. Tenne, “Study of the growth mechanism of WS2 nanotubes produced by a fluidized bed reactor”, J. Mater. Chem., 14, pp.617–624, 2004.
    [11] A. Rothschild, J. Sloan, and R. Tenne, “Growth of WS2 Nanotubes Phases”, J. Am. Chem. Soc., 122, pp.5169-5179, 2000.
    [12] A. Zak, L. S. Ecker, R. Egrati, L. Drangai, N. Fleischer and R. Tenne, “Large-scale synthesis of WS2 multiwall nanotubes and their dispersion, an Update”, Sensors & Transducers Journal, 12, pp.1-10, 2011.
    [13] A. M. Díez-Pascual, M. Naffakh, “Mechanical and thermal behaviour of isotactic polypropylene reinforced with inorganic fullerene-like WS2 nanoparticles: Effect of filler loading and temperature”, Materials Chemistry and Physics, 141, pp.979-989, 2013.
    [14] S. J. Huang, C. H. Ho, Y. Feldman, R. Tenne, “Advanced AZ31 Mg alloy composites reinforced by WS2 nanotubes”, Journal of Alloys and Compounds, Vol 654, pp. 15–22, 2016.
    [15] A. M. K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka, “Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites”, Composites Science and Technology, 70, pp.2237–2241, 2010.
    [16] 彭偉益, “WS2無機奈米材料製作與其對鋁基複合材料強化的應用”, 國立台灣科技大學機械工程學系碩士論文, 2016 【未發表碩論】
    [17] R. E. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles”, PWS Publishing Company, 3rd ed., pp.697-698, 1991.
    [18] M. H. Shaikh1, G. J. Pawar, J. S. Sidhu, “Tribological characterisation and morphological study of epoxy composites filled with WS2 under dry sliding”, International Journal of Science and Research (IJSR), 2, pp.1–4, 2013.
    [19] Y. Feldman, E. Wasserman, D. J. Srolovitz, R. Tenne, “High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes”, Science, 267, pp.222-225, 1995.
    [20] Y. Feldman, A. Zak, R. Popovitz-Biro, R. Tenne, “New reactor for production of tungsten disulfide hollow onion-like (inorganic fullerene-like) nanoparticle”, Solid State Sciences, 2, pp.663–672, 2000.
    [21] Y. Feldman, G. L. Frey, M. Homyonfer, V. Lyakhovitskaya, L. Margulis, H. Cohen, G. Hodes, J. L. Hutchison and R. Tenne, “Bulk Synthesis of Inorganic Fullerene-like MS2 (M = Mo, W) from the Respective Trioxides and the Reaction Mechanism”, J. Am. Chem. Soc., 118, pp.5362-5367, 1996.
    [22] R. Tenne, “Recent advances in the research of inorganic nanotubes and fullerene-like nanoparticles”, Front. Phys., 9, pp.370–377, 2014.
    [23] 郭俊雄, “6061鋁合金在時效期間加工特性之研析”, 國防大學中正理工學院兵器系統工程研究所碩士學位論文, 2005
    [24] 鍾喬森, “利用微弧氧化法在6061鋁合金上鍍製ZrO2/Al2O3氧化模之研究”, 國立台灣科技大學機械工程學系碩士論文, 2015
    [25] T. Sheppard, “Extrusion of Aluminum Alloy”, pp.78-79, 1999.
    [26] H. W. M. Philips and P. C. Varley, J. Inst. Met, Vol. 69, pp.317, 1943.
    [27] Afshin Matin, Faramarz Fereshteh Saniee, Hamid Reza Abedi, “Microstructure and mechanical properties of Mg/SiC and AZ80/SiC nano-composites fabricated through stir casting method”, Materials Science & Engineering, 625, pp.81-88, 2015.
    [28] 張晉昌, “鑄造學,” 全華圖書股份有限公司, 二版, 2008
    [29] Y-Q. Zhu, W-K. Hsu, N. Grobert, B-H. Chang, M. Terrones, H. Terrones, H-W. Kroto, and D-R-M. Walton, “Production of WS2 Nanotubes”, Chemistry of Materials, 12, pp.1190-1194, 2000
    [30] K.M. Shorowordi, T. Laoui, A.S.M.A. Haseeb, J.P. Celis, L. Froyen, “Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study”, Journal of Materials Processing Technology, 142, pp.738-743, 2003.
    [31] Reza Rahmany-Gorji, Ali Alizadeh, Hassan Jafari, “Microstructure and mechanical properties of stir cast ZX51/Al2O3p magnesium matrix composites”, Materials Science & Engineering, 674, pp.413-418, 2016.
    [32] M. Habibnejad-Korayem, R. Mahmudi, W.J. Poole, “Enhance d properties of Mg-base d nano-composites reinforce d with Al2O3 nano-particles”, Materials Science and Engineering, 519, pp.198-203, 2009.
    [33] K. Amouri, Sh. Kazemi, A. Momeni, M. Kazazi, “Microstructure and mechanical properties of Al-nano/micro SiC composites produced by stir casting technique”, Materials Science and Engineering, 674, pp.569-578, 2016.
    [34] H. RIBES, M. SUÉRY, G. L'ESPÉRANCE, J.G. LEGOUX, “Microscopic Examination of the Interface Region in 6061-AI/SIC Composites Reinforced with As-Received and Oxidized SiC Particles”, METALLURGICAL TRANSACTION, 21A, pp.1990-2489, 1989.
    [35] Sung Wan Kim, Won Sub Chung, Kee-Sun Sohn, Chang-Young Son, Sunghak Lee, “Improvement of flexure strength and fracture toughness in alumina matrix composites reinforced with carbon nanotubes”, Materials Science and Engineering, 517, pp.293-299, 2009.
    [36] Gilad Otorgusta, Hanna Dodiuk, Shmuel Kenig, Reshef Tenne, “Important insights into polyurethane nanocomposite-adhesives; a comparative study between INT-WS2 and CNT”, European Polymer Journal, 89, pp.281-300, 2017.
    [37] K. Kalaiselvan, N. Murugan, Siva Parameswaran, “Production and characterization of AA6061–B4C stir cast composite”, Materials and Design, 32, pp.4004-4009, 2011.
    [38] N. Parvin, R. Assadifard, P. Safarzadeh, S. Sheibani, P. Marashi, “Preparation and mechanical properties of SiC-reinforce d Al6061 composite by mechanical alloying”, Materials Science and Engineering, 492, pp.134-140, 2008.
    [39] Muhammad Rashad, Fusheng Pana, Aitao Tanga, Muhammad Asif, “Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method”, Progress in Natural Science: Materials International, 24, pp.101-108, 2014.
    [40] INTAN FADHLINA MOHAMED, SEUNGWON LEE, KAVEH EDALATI,
    ZENJI HORITA, SHOICHI HIROSA WA, KENJI MATSUDA, DAISUKE TERADA, “Aging Behavior of Al 6061 Alloy Processed by High-Pressure
    Torsion and Subsequent Aging”, METALLURGICAL AND MATERIALS TRANSACTIONS, 46A, pp.2664-2673, 2015.
    [41] R. Pérez-Bustamante, C.D. Gómez-Esparza, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jiménez, S. A. Pérez - Garcí, R. Martínez-Sánchez, “Microstructural and mechanical characterization of Al–MWCNT composites produce d by mechanical milling”, Materials Science and Engineering, 502, pp.159-163, 2009
    [42] Thuc Hue Ly, Seok Joon Yun, Quoc Huy Thi, and Jiong Zhao, “Edge Delamination of Monolayer Transition Metal Dichalcogenides”, ACSNANO, pp.A-H, 2017.
    [43] A. Sanaty-Zadeh, “Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect”, Materials Science and Engineering, 531, pp.112-118, 2012.
    [44] Joseph R. Davis, “ASM Specialty Handbook: Aluminum and Aluminum Alloys,” ASM, 1993

    QR CODE