簡易檢索 / 詳目顯示

研究生: 宋程竣
Cheng-Chun Sung
論文名稱: 基於振動與電訊號之滾珠螺桿狀態診斷與異物入侵偵測
Ball Screw Diagnosis and Intrusion Detection based on Vibration and Electrical Signals
指導教授: 劉孟昆
Meng-Kun Liu
口試委員: 藍振洋
Zhen-Yang Lan
黃逸群
Yi-Qun Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 150
中文關鍵詞: 滾珠螺桿異物入侵磨屑螺桿狀態電壓電流支持向量機K-means故障診斷
外文關鍵詞: ball screw, foreign object intrusion, wear debris, screw status, voltage and current, support vector machine, K-means, fault diagnosis
相關次數: 點閱:221下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章、 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.2.1 振動訊號故障偵測與診斷 4 1.2.2 電訊號故障偵測與診斷 5 1.2.3 磨屑影響 6 1.2.4 機器學習 7 1.3 本文貢獻及架構 14 第二章、 研究方法 15 2.1 滾珠螺桿分析方法 15 2.1.1 球通頻率(ball pass frequency) 15 2.1.2 離散小波轉換 19 2.2 特徵預處理 20 2.2.1 正規化 20 2.3 特徵選擇與降維 20 2.3.1 單因子變異數分析(one-way ANOVA) 20 2.3.2 線性區別分析(Linear Discriminant Analysis,LDA) 22 2.4 機器學習 25 2.4.1 支持向量機(support vector machine, SVM) 25 2.4.2 K-means 31 第三章、 實驗規劃 33 3.1 實驗設備 33 3.2 實驗流程 38 3.3 特徵提取 45 3.3.1 振動特徵 48 3.3.2 電訊特徵 50 第四章、 使用SVM對不同異物油濃度進行分類 51 4.1 分析流程 51 4.2 加工鐵屑異物入侵分析 52 4.2.1 時域、頻域觀察訊號變化 53 4.2.2 盒須圖觀察趨勢變化 57 4.3 石英粉異物入侵分析 59 4.3.1 時域、頻域觀察訊號變化 59 4.3.2 盒須圖觀察趨勢變化 63 4.3.3 加工鐵屑與石英粉差異分析結論 65 4.4 SVM分類結果 66 4.4.1 加工鐵屑資料集分類 68 4.4.2 石英粉資料集分類 69 4.4.3 混合異物資料集分類 70 4.4.4 SVM分類結論 72 第五章、 使用K-means + SVM進行螺桿磨耗判別 73 5.1 分析流程 73 5.2 比較不同特徵集對K-means的差異 74 5.2.1 混合特徵集(電訊特徵+振動特徵) 74 5.2.2 振動特徵集 76 5.2.3 三相電壓、電流特徵集 77 5.2.4 單相電壓、電流特徵集 78 5.2.5 電流特徵 79 5.3 SVM分類結果 80 5.4 結論 83 第六章、 結果討論與未來展望 84 6.1 結果討論 84 6.2 研究貢獻 84 6.3 未來展望 85 第七章、 參考文獻 87 附錄A、振動訊號特徵總表 92 附錄B、電訊特徵總表 94 附錄C、其他感測器振動訊號之時、頻域訊號圖 98 附錄D、SVM最佳特徵數量選擇與F-Value排序 107 附錄E、盒須圖趨勢變化 120 附錄F、K-means+最佳特徵數量選擇與F-Value排序 127 附錄G、感測器與擷取卡之價格 134

    [1] 上銀科技股份有限公司,滾珠螺桿技術手冊,上銀科技股份有限公司,台灣(2013)
    [2] Wang, W. (2011). An inspection model based on a three-stage failure process. Reliability Engineering & System Safety, 96(7), 838-848.
    [3] Li, P., Jia, X., Feng, J., Davari, H., Qiao, G., Hwang, Y., & Lee, J. (2018). Prognosability study of ball screw degradation using systematic methodology. Mechanical Systems and Signal Processing, 109, 45-57.
    [4] Pandhare, V., Li, X., Miller, M., Jia, X., & Lee, J. (2020). Intelligent diagnostics for ball screw fault through indirect sensing using deep domain adaptation. IEEE Transactions on Instrumentation and Measurement, 70, 1-11.
    [5] Chang, J. L., Chao, J. A., Huang, Y. C., & Chen, J. S. (2010). Prognostic experiment for ball screw preload loss of machine tool through the hilbert-huang transform and multiscale entropy method. In The 2010 IEEE International Conference on Information and Automation , 376-380.
    [6] Zhang, L., Gao, H., Wen, J., Li, S., & Liu, Q. (2017). A deep learning-based recognition method for degradation monitoring of ball screw with multi-sensor data fusion. Microelectronics Reliability, 75, 215-222.
    [7] Han, C. F., He, H. Q., Wei, C. C., Horng, J. H., Chiu, Y. L., Hwang, Y. C., & Lin, J. F. (2018). Techniques developed for fault diagnosis of long-range running ball screw drive machine to evaluate lubrication condition. Measurement, 126, 274-288.
    [8] Shan, P., Lv, H., Yu, L., Ge, H., Li, Y., & Gu, L. (2020). A multisensor data fusion method for ball screw fault diagnosis based on convolutional neural network with selected channels. IEEE Sensors Journal, 20(14), 7896-7905.
    [9] Lee, W. G., Lee, J. W., Hong, M. S., Nam, S. H., Jeon, Y., & Lee, M. G. (2015). Failure diagnosis system for a ball-screw by using vibration signals. Shock and Vibration, 2015.
    [10] 朱智義, 羅文陽, 顏齊瑩, 李柏霖, 張哲綱, 許竑智, & 林映汝. (2014). 滾珠導螺桿球通頻率暨動力分析. 應用聲學與振動學刊, 6(1), 17-26.
    [11] Tsai, P. C., Cheng, C. C., & Hwang, Y. C. (2014). Ball screw preload loss detection using ball pass frequency. Mechanical Systems and Signal Processing, 48(1-2), 77-91.
    [12] Wei, C. C., & Lin, J. F. (2003). Kinematic analysis of the ball screw mechanism considering variable contact angles and elastic deformations. J. Mech. Des., 125(4), 717-733.
    [13] Yang, Q., Li, X., Wang, Y., Ainapure, A., & Lee, J. (2020). Fault diagnosis of ball screw in industrial robots using non-stationary motor current signals. Procedia Manufacturing, 48, 1102-1108.
    [14] Xu, M., Zhang, H., Liu, Z., Li, C., Zhang, Y., Mu, Y., & Hou, C. (2021). A time-dependent dynamic model for ball passage vibration analysis of recirculation ball screw mechanism. Mechanical Systems and Signal Processing, 157, 107632.
    [15] Zhou, Y., Mei, X., Zhang, Y., Jiang, G., & Sun, N. (2009). Current-based feed axis condition monitoring and fault diagnosis. In 2009 4th IEEE Conference on Industrial Electronics and Applications (pp. 1191-1195).
    [16] Nguyen, T. L., Ro, S. K., & Park, J. K. (2019). Study of ball screw system preload monitoring during operation based on the motor current and screw-nut vibration. Mechanical Systems and Signal Processing, 131, 18-32.
    [17] Huang, Y. C., Kao, C. H., & Chen, S. J. (2018). Diagnosis of the hollow ball screw preload classification using machine learning. Applied Sciences, 8(7), 1072.
    [18] Peng, Z., Kessissoglou, N. J., & Cox, M. (2005). A study of the effect of contaminant particles in lubricants using wear debris and vibration condition monitoring techniques. Wear, 258(11-12), 1651-1662.
    [19] Horng, J. H., Chern, S. Y., Li, C. L., & Chen, Y. Y. (2017). Surface temperature and wear particle analysis of vertical motion double-nut ball screws. Industrial Lubrication and Tribology.
    [20] Peng, Z., & Kessissoglou, N. (2003). An integrated approach to fault diagnosis of machinery using wear debris and vibration analysis. Wear, 255(7-12), 1221-1232.
    [21] Li, K., Qiu, C., Li, C., He, S., Li, B., Luo, B., & Liu, H. (2020). Vibration-based health monitoring of ball screw in changing operational conditions. Journal of Manufacturing Processes, 53, 55-68.
    [22] Li, F., Jiang, Y., Li, T., & Du, Y. (2017). An improved dynamic model of preloaded ball screw drives considering torque transmission and its application to frequency analysis. Advances in Mechanical Engineering, 9(7), 1687814017710580.
    [23] Feng, G. H., & Pan, Y. L. (2012). Investigation of ball screw preload variation based on dynamic modeling of a preload adjustable feed-drive system and spectrum analysis of ball-nuts sensed vibration signals. International Journal of Machine Tools and Manufacture, 52(1), 85-96.
    [24] Yadav, S., & Shukla, S. (2016). Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. In 2016 IEEE 6th International conference on advanced computing (IACC) (pp. 78-83).
    [25] Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Ijcai (Vol. 14, No. 2, pp. 1137-1145).
    [26] Liashchynskyi, P., & Liashchynskyi, P. (2019). Grid search, random search, genetic algorithm: A big comparison for NAS. arXiv preprint arXiv:1912.06059.
    [27] Swana, E., & Doorsamy, W. (2021). An unsupervised learning approach to condition assessment on a wound-rotor induction generator. Energies, 14(3), 602.
    [28] Wen, J., Gao, H., Liu, Q., Hong, X., & Sun, Y. (2018). A new method for identifying the ball screw degradation level based on the multiple classifier system. Measurement, 130, 118-127.
    [29] Azamfar, M., Li, X., & Lee, J. (2020). Intelligent ball screw fault diagnosis using a deep domain adaptation methodology. Mechanism and Machine Theory, 151, 103932.
    [30] Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and electronics in agriculture, 147, 70-90.
    [31] Chen, K., Zu, L., & Wang, L. (2018). Prediction of preload attenuation of ball screw based on support vector machine. Advances in Mechanical Engineering, 10(9), 1687814018799161.
    [32] Zheng, B., Yoon, S. W., & Lam, S. S. (2014). Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms. Expert Systems with Applications, 41(4), 1476-1482.
    [33] Santhanam, T., & Padmavathi, M. S. (2015). Application of K-means and genetic algorithms for dimension reduction by integrating SVM for diabetes diagnosis. Procedia Computer Science, 47, 76-83.
    [34] El-Thalji, I., & Jantunen, E. (2014). A descriptive model of wear evolution in rolling bearings. Engineering failure analysis, 45, 204-224.
    [35] Maru, M. M., Castillo, R. S., & Padovese, L. R. (2007). Study of solid contamination in ball bearings through vibration and wear analyses. Tribology International, 40(3), 433-440.
    [36] 張竣閔(2021)。基於擴展派克向量模數與支持向量機之感應馬達故障診斷。國立臺灣科技大學機械工程系碩士論文,台北市。
    [37] Kompella, K. D., Mannam, V. G. R., & Rayapudi, S. R. (2016). DWT based bearing fault detection in induction motor using noise cancellation. Journal of Electrical Systems and Information Technology, 3(3), 411-427.
    [38] Senthil Kumar, R., & Gerald Christopher Raj, I. (2021). Broken rotor bar fault detection using DWT and energy eigenvalue for DTC fed induction motor drive. International Journal of Electronics, 108(8), 1401-1425.

    無法下載圖示 全文公開日期 2032/08/03 (校內網路)
    全文公開日期 2032/08/03 (校外網路)
    全文公開日期 2032/08/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE