簡易檢索 / 詳目顯示

研究生: 江秉豫
Ping-Yu Chiang
論文名稱: 2×2時間反轉空時區塊碼廣義分頻多工系統之研究
Research on 2×2 Time Reversal Space Time Block Code Generalized Frequency Division Multiplexing Systems
指導教授: 張立中
Li-Chung Chang
口試委員: 劉馨勤
Hsin-Chin Liu
曾德峰
Der-Feng Tseng
曾恕銘
Shu-Ming Tseng
陳永芳
Yung-Fang Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 69
中文關鍵詞: 廣義分頻多工空時編碼線性轉換峰均值功率比複雜度解碼器
外文關鍵詞: GFDM, STBC, Linear Transform, Complexity, PAPR, Decoder
相關次數: 點閱:453下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在第四代行動通訊(the 4th Generation of mobile communication system,4G)中,通訊標準為正交分頻多工技術為主,雖然它憑藉著有效的對抗頻率選擇性衰減通道、抗碼間干擾能力強、實現簡單等諸多優點,但缺點為高頻外溢出與高峰均值功率比,這些缺點與第五代的行動通訊系統(the 5th Generation of mobile communication system,5G)未來目標所設定的條件不符。
隨著物聯網的興起,下一代移動通信系統將面臨新的挑戰,不僅僅是增加吞吐量,觸覺互聯網要求低延遲,處理大覆蓋區域需要穩健性。除此之外,下一代通訊系統的任何波形都需要與多輸入多輸出(Multi-Input Multi-Ouput ,MIMO)兼容。廣義分頻多工(Generalized Frequency Division Multiplexing,GFDM)是一種可以靈活應對未來網路即將到來的需求的候選者,它有著低頻外溢出和低峰均值功率比(Peak to Average Power Ratio,PAPR)的特性,並且能有效的利用電視白空間,讓現今零散的頻段能有效的被利用。
在本篇論文中,我們在時間反轉空時區塊碼(TR-STBC)中分別使用了多種解碼方法來進行效能分析,同時也使用了多種Transform進而討論GFDM的PAPR、位元錯誤率(Bit error rate,BER)同時也討論了各個解碼方法之複雜度(complexity)。
BER效能模擬將會在GFDM系統之不同濾波器、通道模型、調變方法的環境下進行,分析每一種方法在不同的情況下會有甚麼影響。
關鍵字:廣義分頻多工、空時編碼、線性轉換、複雜度、峰均值功率比、解碼器


In the 4th Generation of mobile communication system (4G), the communication standard is dominated by orthogonal frequency division multiplexing technology, although it relies on effective frequency selective attenuation channels, strong resistance to inter-code interference, achieve simplicity and many other advantages.However, the disadvantage is the high-frequency external overflow and the peak-to-average power ratio. These shortcomings are inconsistent with the conditions set by the 5th Generation of mobile communication system (5G).
With the rise of the Internet of Things, next-generation mobile communication systems will face new challenges, not only to increase throughput, but also to require low latency for the Internet, and to handle robustness in handling large coverage areas. In addition, any waveform of the next generation communication system needs to be compatible with Multi-Input Multi-Ouput (MIMO). Generalized Frequency Division Multiplexing (GFDM) is a candidate that can flexibly respond to the upcoming needs of future networks. It has low-frequency out-of-band and low-to-peak power ratio (PAPR). Features, and can effectively use the TV white space, so that today's scattered frequency bands can be effectively utilized.
In this paper, we use a variety of decoding methods for performance analysis in time-reversed space-time block codes (TR-STBC). At the same time, a variety of Transforms are used to discuss the PAPR and Bit error rate (BER) of GFDM and also discuss the complexity of each decoding method. The BER performance simulation will be performed in different filter, channel model, and modulation method environments of the GFDM system to analyze the impact of each method in different situations.
Keyword:GFDM、STBC、Linear Transform、Complexity、PAPR、Decoder

目錄 摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第1章 序論 1 1.1 研究動機與目的 1 1.2 論文架構 2 第2章 系統架構與相關理論介紹 3 2.1 廣義分頻多工系統 3 2.1.1 傳送端架構 4 2.1.2 通道模型 11 2.1.3 接收端架構 15 2.1.4 峰均值功率比 17 第3章 提出的方法、複雜度與架構 18 3.1 時間反轉空時區塊碼廣義分頻多工系統 18 3.1.1 傳送端架構 18 3.1.2 接收端架構 20 3.1.3 複雜度 30 第4章 模擬結果與討論 35 4.1 廣義分頻多工效能分析 35 4.1.1 在不同濾波器下有無線性轉換之PAPR效能 36 4.1.2 在AWGN通道下不同濾波器的BER效能 39 4.1.3 在AWGN通道下不同解調器與調變數的BER效能 40 4.1.4 有無線性轉換不同通道下的BER效能 42 4.2 2×2 TR-STBC-GFDM系統效能分析 48 4.2.1 SISO/TR-STBC-GFDM PAPR之效能 49 4.2.2 不同通道下兩種Decoder(ZF/DZFD)之BER分析 54 4.2.3 在MRC Decoder下,添加不同線性轉換之BER效能 57 第5章 結論與未來研究方向 61 附錄A 62 附錄B 63 附錄C 64 附錄D 66 參考文獻 68

[1] G. Wunder et al., "5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications," IEEE Communications Magazine, vol. 52, no. 2, pp. 97-105, 2014.
[2] N. Michailow et al., "Generalized Frequency Division Multiplexing for 5th Generation Cellular Networks," IEEE Transactions on Communications, vol. 62, no. 9, pp. 3045-3061, 2014.
[3] G. Fettweis, M. Krondorf, and S. Bittner, "GFDM - Generalized Frequency Division Multiplexing," in VTC Spring 2009 - IEEE 69th Vehicular Technology Conference, 26-29 April 2009, pp. 1-4.
[4] N. Al-Dhahir, "Single-carrier frequency-domain equalization for space-time block-coded transmissions over frequency-selective fading channels," IEEE Communications Letters, vol. 5, no. 7, pp. 304-306, 2001.
[5] J. V. D. Beek and F. Berggren, "Out-of-Band Power Suppression in OFDM," IEEE Communications Letters, vol. 12, no. 9, pp. 609-611, 2008.
[6] B. Farhang-Boroujeny, "OFDM Versus Filter Bank Multicarrier," IEEE Signal Processing Magazine, vol. 28, no. 3, pp. 92-112, 2011.
[7] V. Vakilian, T. Wild, F. Schaich, S. t. Brink, and J. Frigon, "Universal-filtered multi-carrier technique for wireless systems beyond LTE," in 2013 IEEE Globecom Workshops (GC Wkshps), 9-13 Dec. 2013, pp. 223-228.
[8] P. Myonghee, J. Heeyoung, C. Jaehee, C. Namshin, H. Daesik, and K. Changeun, "PAPR reduction in OFDM transmission using Hadamard transform," in 2000 IEEE International Conference on Communications. ICC 2000. Global Convergence Through Communications. Conference Record, 18-22 June 2000, vol. 1, pp. 430-433 vol.1.
[9] I. Baig and V. Jeoti, "PAPR analysis of DHT-precoded OFDM system for M-QAM," in 2010 International Conference on Intelligent and Advanced Systems, 15-17 June 2010, pp. 1-4.
[10] G. D. Mandyam, "On the discrete cosine transform and OFDM systems," in 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 6-10 April 2003, vol. 4, pp. IV-544.
[11] S. Enchang, Y. Kechu, T. Bin, and X. Wang, "A method for PAPR reduction in MSE-OFDM systems," in 20th International Conference on Advanced Information Networking and Applications - Volume 1 (AINA'06), 18-20 April 2006, vol. 2, p. 4 .
[12] N. Ahmed, T. Natarajan, and K. R. Rao, "Discrete Cosine Transform," IEEE Transactions on Computers, vol. C-23, no. 1, pp. 90-93, 1974.
[13] M. M. Hasan, "VLM Precoded SLM Technique for PAPR Reduction in OFDM Systems," Wireless Personal Communications, vol. 73, no. 3, pp. 791-801, 2013.
[14] N. Michailow, M. Lentmaier, P. Rost, and G. Fettweis, "Integration of a GFDM secondary system in an OFDM primary system," in 2011 Future Network & Mobile Summit, 15-17 June 2011, pp. 1-8.
[15] F. Schaich, T. Wild, and Y. Chen, "Waveform Contenders for 5G - Suitability for Short Packet and Low Latency Transmissions," in 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), 18-21 May 2014, pp. 1-5
[16] N. Michailow, S. Krone, M. Lentmaier, and G. Fettweis, "Bit Error Rate Performance of Generalized Frequency Division Multiplexing," in 2012 IEEE Vehicular Technology Conference (VTC Fall), 3-6 Sept. 2012, pp. 1-5,.
[17] S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, 1998.
[18] W. Zhang, Z. Zhang, J. Jia, and L. Qi, "STC-GFDM systems with Walsh-Hadamard transform," in 2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT), 20-22 Aug. 2016 pp. 162-165.
[19] C. Li, J. Wu, I. Tang, and G. Li, "Performance Comparison of the STBC-OFDM Decoders in a Fast Fading Channel," in 2008 Second International Symposium on Intelligent Information Technology Application, 20-22 Dec. 2008, vol. 2, pp. 791-795.
[20] H. Kanemaru and T. Ohtsuki, "Interference cancellation with diagonalized maximum likelihood decoder for space-time/space-frequency block coded OFDM," in 2004 IEEE 59th Vehicular Technology Conference. VTC 2004-Spring (IEEE Cat. No.04CH37514), 17-19 May 2004 vol. 1, pp. 525-529.
[21] G. H. Golub and C. F. V. Loan, "Matrix computations (3rd ed.)," Johns Hopkins University Press, 1996.

無法下載圖示 全文公開日期 2024/08/21 (校內網路)
全文公開日期 2029/08/21 (校外網路)
全文公開日期 2029/08/21 (國家圖書館:臺灣博碩士論文系統)
QR CODE