簡易檢索 / 詳目顯示

研究生: 藍慶應
Chin-yin Lan David
論文名稱: 新穎 10Gbps 光接收次模組構裝
Innovative 10Gbps ROSA Packaging
指導教授: 廖顯奎
Shien-kuei Liaw
林鴻輝
Hong-huey Lin
口試委員: 李三良
San-liang Lee
洪境祥
Jing-shyang Horng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 96
中文關鍵詞: 10Gbps PIN-TIA 光接收次模組氧化鋁陶瓷低成本微透鏡
外文關鍵詞: 10Gbps PIN-TIA ROSA, Alumina ceramic, low cost, XMD MSA, micro-lens
相關次數: 點閱:342下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

因應10Gbps 光纖網路的迅速發展,降低網路所需之主被動元件成本也成為相對趨勢。本論文提出運用氧化鋁陶瓷做為基板,構裝出低成本之新穎 10Gbps光接收次模組。

在結構方面,所設計之LC插座型元件符合“光學元件多源協議 (XMD-MSA)”之統一規格。此外,此設計採用平窗型封蓋和BK52的球透鏡替代傳統的透鏡型封蓋,除了成本較低外,也省略了透鏡對光檢測器的對耦步驟。

在光學特性方面,由於陶瓷基板型光接收次模組在設計方面物距相較比像距短,因此在光學上為放大系統。這造成耦光效率降低及橫向位移的容許度變窄。本論文提出採用以矽材質製成的微透鏡放置在光檢測器的上方將已放大的光班再度聚合以提高光學特性。量測報告顯示,使用微透鏡後在1310nm波長的光響應度為0.81A/W而在80%的橫向位移容許範圍可達到35um,符合與Zemax光學模擬後的結果。

本論文利用模擬軟體提出10Gbps PIN-TIA 光接收次模組的高頻設計方向,分別探討光檢測器和連結金線的尺寸和規格對於高頻模組的影響。模擬結果顯示光檢測器的接收面積在直徑36um時-3dB頻寬可達到~14GHz同時達到90% 的圓內能量。連結金線,尤其是訊號傳輸線,需要限制在1mm以下以維持10Gbps的高頻特性。

整體陶瓷基板型光接收次模組的高頻特性則是依輸出端的型態做模擬。模擬結果顯示模組頻寬和反射損失分別為9.6GHz和-9.5dB。在靈敏度和飽和度方面量測結果分別為-11dBm和2.9dBm。經由實驗後可證明使用低損失且阻抗匹配之FPC板,靈敏度可期望提升6dB。模組在-5℃、25℃和85℃的靈敏度差異為 1.12dB。模組在時域的特性方面可由眼圖來觀察,模組的交叉比率、時基誤差和上升時間分別量測為 51%,2.9 psec和53.39 psec。

陶瓷基板型光接收次模組在材料成本和製造成本分別為習用光接收次模組的76% 和85%,量率初估與習用光接收次模組相同為95%。因此,總成本為習用光接收次模組的80%。


In this dissertation, a cost competitive 10Gbps PIN-TIA optical sub-assembly receiver based on Alumina ceramic substrate is proposed. The innovated ceramic based ROSA packaging is in the form of LC receptacle type and is fully compatible to XMD MSA requirements. By taking BOM cost, production cost and yield rate into considerations, the overall cost of ceramic base ROSA is 80% to the conventional ROSA.

As for the optical properties of ceramic based ROSA, since the object distance of ceramic based ROSA is shorter than its image distance, thus the ceramic ROSA is considered as magnification system. The optical system of ceramic based ROSA can be optimized by placing a micro-lens above the detector to converge the beam spot. The responsivity of micro-lensed ceramic based ROSA at 1310nm of wavelength and the lateral shifts tolerance are 0.81 A/W and 35um, respectively.

The electrical performances of micro-lensed ceramic based ROSA are verified through the simulation and measurement. The simulated -3dB cutoff frequency and electrical return loss are 9.6GHz and -9.5dB at 7.5GHz, respectively. A pair of coaxial cables with 10dB loss at 10GHz is in place to measure the sensitivity and the saturation power. The sensitivity and the saturation power measured at 10Gbps are -11 dBm and 2.9dBm, respectively. In comparison to the ROSA with sensitivity of -19dBm at 10Gbps that is also measured by the coaxial cables, the result is -13 dBm. Thus, the hypothesis is made that the sensitivity of micro-lensed ceramic based ROSA might improve at least 6 dB if the appropriated FPC is utilized.

The sensitivity variation of ceramic ROSA measured at -5℃, 25℃, and 85℃ is 1.12 dB. The electric eye pattern of the ceramic based ROSA shows that the eye crossing percentage of ceramic ROSA is 51.3%, and the Jitter RMS and rise time are measured as 2.9 psec and 53.39 psec in average, respectively.

Abstract I 摘要 II 誌謝 III List of Figures VI List of Tables X Chapter 1 Introduction 1 1.1 The Overview of Optic Fiber Communication 1 1.2 10-Gigabit Networking Market 3 1.3 Motivation 5 1.4 Thesis Contents 7 Chapter 2 Background and Design Criteria for 10Gbps ROSA 8 2.1 Basics of Optical Receivers 8 2.2. The Design of 10Gbps PIN Photodiode 11 2.3 The Design of High Speed Preamplifier 19 2.4 Microwave Bond Wires Interconnects 23 2.5 Receiver Optical Sub-Assembly Packaging 26 2.6 Specifications of LC Receptacle 10Gbps PIN-TIA ROSA 30 Chapter 3 The Design of Low Cost Ceramic Based 10Gbps ROSA 32 3.1 Former Cost Reduction Strategies for 10Gbps ROSAs 32 3.2 Proposed Ceramic Based 10Gbps PIN-TIA ROSA 36 3.3 Fabrication of Ceramic Substrate 43 3.4 Cost Comparisons of ROSAs 48 Chapter 4 Optical and Electrical Simulations 50 4.1 Simulation Software 50 4.2 Optical Models and Simulation Results 51 4.4 Optical Design of ROSA with Micro-Lens 58 4.3 Electrical Design of Ceramic Based ROSA 62 4.4 Transmission Line Modeling 63 4.5 Final Simulation Results 66 Chapter 5 The Measurement of Low Cost Ceramic Based ROSA 69 5.1 Optical and Electrical Test Items 69 5.2 Optical Measurements 70 5.3 Electrical Measurements 77 Chapter 6 Conclusions and Future Works 89 6.1 Conclusion 89 6.2 Future Works 92 REFERENCES 93

[1] Tohru Kazawa, “Optical access system implementation – ITU-T G-PON technology”, Hitachi Communication Technologies, pp. 4, 20th June, 2007.

[2] Rajiv Ramaswami and Kumar N. Sivarajan, “Optical networks – A practical perspective”, Morgan Kaufmann, pp. 21, 2002.

[3] Cisco Documentation, “DWDM in metropolitan area networks”, Introduction to DWDM Technologies, Cisco, Chapter 3, pp.3, June 2000.

[4] Lightwave Online Article, “10G market will net $3.3 billion by 2009, claim new CIR report”, 2nd December, 2004. http://lw.pennnet.com/articles/article_display.cfm?Section=ARCHI&C=OPBUS&ARTICLE_ID=217309&KEYWORDS=Market%2010G%20SONET%20OC%2D192&p=13

[5] Intel in Communications, “10 Gigabit ethernet technology overview”, Intel®, pp. 3, 2003.

[6] Roy Bynum, “10GbE implementations architectures – A view of where and how 10GbE will be used and the fiber facilities support needed”, Optical and Data Network Technology Development, MCI WorldCom, Richardson, Texas. pp. 4, September 1999.
http://grouper.ieee.org/groups/802/3/10G_study/public/sept99/bynum_1_0999.pdf

[7] Jon Baldry, “Storage networks: Fiber channel at 4G and beyond”, fibers.org, 7th August, 2006.
http://fibers.org/articles/news/8/8/3/1

[8] Seamus Crehan, “The rise and fall of 10-Gigabit ethernet pricing”, Dell’Oro Group Inc., Business Communications Review ®, 1st April, 2006.
http://www.bcr.com/market_trends/market_trends/10_gigabit_ethernet_200604011177.htm

[9] Rick Merritt, “All roads lead to 10-Gbit nets”, EE Times, InformationWeek, pp. 3, 2nd August, 2005.
http://www.informationweek.com/hardware/showArticle.jhtml;jsessionid=I3CAGNNTOQ3FYQSNDLOSKH0CJUNN2JVN?articleID=164903152&pgno=3&queryText=

[10] Jochen Kuhmann, Thomas Murohy, Arnd Kilian and Ralf Hauffe, “Cost reduction strategies for 10Gbit/s optical subassemblies”, Hymite GmbH, pp. 1, September 2005.

[11] H. Hidaka, S. Saitou, M. Ishikawa, K. Katou, H. Tanaka, K. Matsumoto, H. Murata, H. Ishibashi, H. Go, “XFP transceiver module for 10Gbps SDH intermediate reach applications”, Sumitomo Electric Industries, Ltd. and Innovation Core SEI, Inc., SEI TECHNICAL REVIEW • NUMBER 59, pp.40, January 2005.

[12] Jim Rue, Mark Itzler, Nitish Agrawal, Stephen Bay, and William Sherry, “High performance 10Gb/s PIN and APD optical receivers”, EPITAXX, Inc. 1999 Electronic Components and Technology Conference, pp.207-208, 1999.

[13] M. B. Yi, J. Paslaski, Y. Y. Liu, T. R. Chen and Yariv, “High-speed front-illuminated GaInAsP/InP pin photodiode”, Electron. Lett. Vol 24 No.8 , pp.455, 14th April, 1988.

[14] Djafar K. Mynbaev and Lowell L. Scheiner, “Fiber optic communications technology”, Prentice Hall, Inc., pp.441-442, 2001.

[15] R. F. Leheny, Robert E. Nohory, Martin A. Pallack, Edgar D. Beebe and Christian D. Winter, “Characterization of In0.53Ga0.47As photodiodes exhibiting low dark current and low junction capacitance”, IEEE QE-17, No.2, pp.227, 1981.

[16] Shiwei Feng, Changzhi Lu, “Influence of InP cap layer on photo-responsivity of InP/InGaAs PIN detector”, Sch. of Electron. Inf. & Auto Control, Beijing Univ. of Technol.. 2004 Solid-State and Integrated Circuits Technology, pp.2332-2334, 2004

[17] J. C. Campbell, A. G. Dentai, G. J. Qua, J. Long, and V. G. Riggs, “Planar InGaAs p-i-n photodiode with a semi-insulating InP cap layer,” IEEE Electron. Lett., vol. 21, No. 10, pp. 447-448, 1985.

[18] Djafar K. Mynbaev and Lowell L. Scheiner, “Fiber optic communications technology”, Prentice Hall, Inc., pp.444, 2001.

[19] Myunghee Lee, “A quasi-monolithic optical receiver using a standard digital CMOS technology”, Georgia Institute of Technology, pp.13th May, 1996.

[20] J. E. Franca and Y. Tsividis, “Design of analog-digital VLSI circuits for telecommunications and signal processing”, Ch. 5, Prentice-Hall, Englewoods Cliffs, N. J., 1994.

[21] Graeme, Jerald G., “photodiode amplifiers: Op amp solutions”, McGraw-Hill, pp.35, 1996.

[22] Gtran TIA Preliminary Datasheet, “10Gbps transimpdance amplifier specifications GT105011GAS”, Gtran Inc., January 2004.

[23] Eugene John and Mukunda B. Das, Senior Member, IEEE, “Design and performance analysis of InP-based high-speed and high-sensitivity optoelectronic integrated receivers”, IEEE Trans. on Electron Devices , vol. 41, No. 2, February 1994.

[24] Application Notes, “Design with the AOC 10Gbps TOSA and ROSA”, Finisar Corporation, pp.19, 2007.

[25] Steven L. March, "Simple equations characterize bond wires", Microwaves & RF, pp. 105-110, November 1991.

[26] Dean Nicholson and HeeSoo Lee, “Characterization and modeling of bond wires for high frequency applications”, Microwave Engineering Europe, pp.40~46, August/September 2006.

[27] A. Sutono, N. G. Cafaro, J. Laska and E. Tentzeris, “Experimental study and Modeling of Microwave Bond Wire Interconnect”, 2000 IEEE AP-S, Salt Lake City, UT. Section A11, Interconnect and Packaging, pp.2020-2023, 2000.

[28] XMD MSA Committee, “Physical interface of LC ROSA type 1 package”, XMD13, Rev. 2.1. 17th January, 2006.

[29] XMD MSA Committee, “Physical interface of LC ROSA type 2 package”, XMD14, Rev. 2.1. 17th January, 2006.

[30] XMD MSA Committee, “Electrical and optical interfaces of ROSA PIN”, XMD11, Rev. 2.1. 17th January, 2006.

[31] Emcore Corporation (2006), “TO-packaged optical-fiber receiving interface and method”, US Patent: us 7136552 B2

[32] A. Kanda, A. Ohki, Y. Suzuki, Y. Akatsu, “10 Gbit/s small form factor optical transceiver for 40 km WDM transmission”, IEEE Electron. Lett., Volume 40, Issue 8, pp. 494-495, 15th April 2004.

[33] Hewitt-Packard Company (1996), “Optical connector including split sleeve secured in expanded state”, US Patent: us 5577145.

[34] International Business Machines Corporation (1996), “Molded plastic optical fiber-optoelectronic converter sub-assembly”, US Patent: us 537504.

[35] Optical Communication Product, Inc. (2003), Whatsworth, CA, “High-speed optical sub-assembly utilizing ceramic substrate, direct coupling and laser welding”, US Patent: us 6659659.

[36] Electrical Engineering and Computer Department Online Information, “Coefficient of thermal expansion (CTE)”, Brigham Young University.
http://www.ee.byu.edu/cleanroom/CTE_materials.phtml

[37] AZoM.com Online Information, “Stainless material – Grade 304”.
http://www.azom.com/details.asp?ArticleID=965

[38] Consolidate Refining Co., Inc., “Lid assembly for hermetic sealing of a semiconductor chip”, US Patent: us 4331253.

[39] Yi-Chun Liao and Ming-Huei Yu, “Effect of laser beam energy and incident angle on the pulse laser welding of stainless steel thin sheet”, Journal of Materials Proceeding Technology, Volume 190, Issue 1-3, pp. 102-108, 23rd July, 2007.

[40] N. Hassaine, L. Villeneuve, and F. Concilio, “high frequency characterization of via hole discontinuity”, Electrical and Computer Engineering, 2004. Canadian Conference, Volume 2, pp. 743-746, 2nd May, 2004.

[41] Tong Hsing Electric Industries Ltd., “Method for removing voids in a ceramic substrate”, US patent: us 6800211 B2.

[42] Technical Datasheet, “ABLEBOND® 2100A”, Ablestik, May 2001.

[43] Donald Z. Roger, “Ball lenses for telecom and datacom applications”, Deposition Science Inc., pp.2, 2002.

[44] Almar Giesberts, “Receiver design for a radio over polymer optical fiber system”, MSc Graduated Thesis, Eindhoven University of Technology, Netherlands, pp.21, 2003.

[45] Joerg R. Kropp, “Micro-module technology for Tx and Rx”, EZconn Corporation Europe, pp.5, July 2006.

[46] Infineon Technology, “Optoelectronic micromodule”, US Patent: us 6703605 B2.

[47] Advanced design system 2002 reference notes, “LineCalc”, Agilent Technologies, February 2002.

[48] Application Notes, “Even mode impedance – an introduction”, Polar Instrument Ltd., 2002

[49] Hugo Vifian, “A new principle for measuring electrical length and deviation from linear phase”, European Microwave Conference, pp.200, October 1976.

[50] Stella Kuei-Ann Wen, “RF transceiver design“, Institute of Electronics, National Chiao Tung University, pp. 51, 12th January, 2005.
www.nctutwt.net/lab050112/courses/nRF_Microelectronics/CommCKT/Lec1RFFun.ppt

[51] Schott AG, “Model: 10.277.0; Flat window cap specification sheet”, 14th April, 2001.

[52] Microsemi Corporation (1996), “Surface mount packaging with low coefficient of thermal expansion”, US Patent: us 5821617.

QR CODE