簡易檢索 / 詳目顯示

研究生: 陳韋任
Wei-Ren Chen
論文名稱: 氧化亞銅單晶及薄膜之電傳輸與光電導特性研究
Electronic Transport Properties and Photoconductivities in Cuprous Oxide Bulks and Thin Films
指導教授: 郭中豐
Chung-Feng Kuo
陳瑞山
Ruei-San Chen
口試委員: 向四海
Sih-Hai Siang
王丞浩
Chen-Hao Wang
周賢鎧
hyan-kay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 84
中文關鍵詞: 反向式濺鍍蝕刻法氧化亞銅歐姆接觸光電導特性表面缺陷
外文關鍵詞: inverse sputter etching, Cu2O, ohmic contact, photoconductivity, surface defect
相關次數: 點閱:228下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用不同參數之反向式濺鍍蝕刻法(inverse sputter etching
technique)轟擊半導體材料表面以去除潛在的表面汙染物,如天然氧
化物與碳氫化合物,使其半導體-金屬接面之接觸電阻最小化。並利
用濺鍍方式沉積鉻/金雙層金屬,製作出具有良好歐姆接觸之雙電極
半導體元件。在氧化亞銅(Cu2O)方面,以濺鍍方式製作氧化亞銅(111)
及(200)面單晶塊材與(100)面磊晶薄膜元件,並探討其電傳輸及光電
導特性。使用熱探針法確認此氧化亞銅為P 型半導體。氧化亞銅單晶
塊材與磊晶薄膜之電導率約為10-3 S/cm。變溫暗電導量測顯示,不同
晶面方向之氧化亞銅,其主要載子可能皆來自不同的來源。以532 nm
波長的綠光雷射進行光電導量測,計算出單晶塊材與磊晶薄膜之歸一
化增益值分別約為10-5 ~10-4 cm2V-1 與10-8 cm2V-1。此外,本研究建立
一物理模型解釋氧化亞銅單晶塊材與磊晶薄膜在綠光雷射下之載子
活期行為與近紫外光雷射之光電流變化情形。由此模型可以推測,氧
化亞銅之表面缺陷與空氣中的氧或水分子可能有明顯的交互作用。


In this study, the technique of inverse sputter etching has been used to
minimize contact resistance in the metal-semiconductor interfaces by
removing the potential surface contaminants such as native oxides and
hydrocarbons. Two-terminal devices using Cr/Au bi-layer contact
electrodes with great ohmic contact condition have been achieved. For
the study of cuprous oxide (Cu2O), the devices of Cu2O (111) and (200)
single crystals and Cu2O (100) epitaxial films have been fabricated by
sputter, and the electronic transport properties and photoconductivities in
Cu2O have been investigated. Hot-probe method confirmed that the Cu2O
single crystal is a p-type semiconductor. The conductivities of Cu2O
single crystals and an epitaxial film are around 10-3 S/cm.
Temperature-dependent conductivity measurement shows that the
majority carriers in the Cu2O with different out-of-plane orientations
could be activated from different defect levels or defect bands.
Photoconductivities in Cu2O by the excitation of the wavelength of 532
nm were also investigated. The normalized gain of the Cu2O single
crystals and the epitaxial films are 10-5 ~10-4 cm2V-1 and 10-8 cm2V-1,
respectively. In addition, a physical model based on the p-type
semiconductors has been proposed to explain the carrier lifetime under
532 nm green laser excitation and an anomalous photoresponse curve
under 325 nm UV illumination. It is inferred that the surface defects in
Cu2O exhibit strong interaction with the ambient molecules such as
oxygen and water.
Key

中文摘要 ..................................................................................................... I Abstract ...................................................................................................... II 致謝 ........................................................................................................... III 目錄 .......................................................................................................... IV 圖目錄 ...................................................................................................... VI 表目錄 ........................................................................................................ X 第一章 緒論............................................................................................... 1 1.1 研究背景與動機 ......................................................................... 1 1.2 文獻回顧 ..................................................................................... 3 1.3 研究目的 ..................................................................................... 5 第二章 實驗理論基礎與方法 .................................................................. 6 2.1 氧化亞銅單晶塊材及磊晶薄膜結構特性檢測 ......................... 6 2.1.1 原子力學顯微鏡 (Atomic Force Microscopy, AFM) ..... 6 2.1.2 熱探針法 .......................................................................... 9 2.2 氧化亞銅單晶塊材及磊晶薄膜元件製作 ............................... 11 2.2.1 磁控濺鍍法 (Magnetron Sputter) ................................. 11 2.2.2 原子力顯微鏡定義濺鍍薄膜厚度 ................................ 15 2.2.3 反向式濺鍍蝕刻 (Inverse Sputter Etching Technique) 21 2.2.4 漆包線接合 .................................................................... 23 2.3 氧化亞銅單晶塊材及磊晶薄膜之暗電導特性研究 ................ 25 2.3.1 電流對電壓曲線量測(current-voltage measurement) ... 27 2.3.2 溫度變化之暗電流量測(temperature-dependent dark V current measurement) ..................................................... 27 2.4 氧化亞銅單晶塊材及磊晶薄膜之光電導特性研究 ................ 29 第三章 結果與討論 ................................................................................ 31 3.1 反向式濺鍍蝕刻 ....................................................................... 31 3.1.1 反向式濺鍍蝕刻參數之測試 ......................................... 31 3.1.2 反向式濺鍍蝕刻之工作壓力相依電導率值 ................ 34 3.1.3 反向式濺鍍蝕刻之矽元件最佳參數 ............................ 36 3.2 氧化亞銅單晶塊材及磊晶薄膜之表面形貌 ........................... 39 3.3 利用原子力顯微鏡 (AFM) 定義氧化亞銅磊晶薄膜厚度 .... 41 3.4 熱探針量測結果之分析 ............................................................ 43 3.5 氧化亞銅單晶塊材及磊晶薄膜之暗電導特性研究 ................ 45 3.5.1 氧化亞銅單晶塊材及磊晶薄膜元件之電導率 ............ 45 3.5.2 低溫電導率分析 ............................................................ 47 3.6 氧化亞銅功率相依光電導量測 ................................................ 53 3.6.1 氧化亞銅在532 nm 雷射下環境變化功率相依光導 量測 ................................................................................ 53 3.6.2 氧化亞銅在325 nm 雷射下環境變化功率相依光導 量測 ................................................................................ 72 第四章 結論............................................................................................. 79 參考文獻 ................................................................................................... 81

[1] L. J. Brillson, “Metal-Semiconductor Interfaces,” Surf. Sci., vol.
299-300, pp. 909-927, Jan 1994.
[2] A. Scorzoni and M. Finetti, “Metal/Semiconductor Contact
Resistivity and Its Determination From Contact Resistance
Measurements,” Mater. Sci. Rep., vol. 3, iss. 2, pp. 79-137, May
1988.
[3] W. Shockley and H. J. Queisser. “Detailed balance limit of efficiency
of p‐n junction solar cells,” J. Appl. Phys., vol. 32, iss. 3, pp. 510-519,
Oct 1961.
[4] T. Minami, Y. Nishi, and T. Miyata, “Heterojunction Solar Cell with
6% Efficiency Based on An N-Type Aluminum–Gallium–Oxide Thin
Film and P-Type Sodium-Doped Cu2O Sheet,” Appl. Phys. Express,
vol. 8, no. 2, p. 022301, Feb 2015.
[5] H. B. Michaelson, “The Work Function of The Elements and Its
Periodicity,” J. Appl. Phys., vol. 48, iss. 11, Jul 1977.
[6] V. Vlack and H. Lawrence, Elements of Materials Science and
Engineering. Seattle: Amazon, 1985.
[7] L. Y. Isseroff and E. A. Carter, “Electronic Structure of Pure and
Doped Cuprous Oxide with Copper Vacancies: Suppression of Trap
States,” Chem. Mater., vol. 25, iss. 3, pp. 253-265, Feb 2013.
[8] B. K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, B. Kramm,
P. J. Klar, T. Sander, C. Reindl, C. Heiliger, M. Heinemann, C. Müller,
and C. Ronning, “Chapter Six - The Physics of Copper Oxide
(Cu2O),” Semicond. Semimet., vol. 88, pp. 201-226, May 2013.
[9] M. Nolana and S. D. Elliotta, “The P-Type Conduction Mechanism in
Cu2O: A First Principles Study,” Phys. Chem. Chem. Phys., vol. 8,
82
iss. 45, pp. 5350-5358, Oct 2006.
[10] D. O. Scanlon, B. J. Morgan, G. W. Watson, and A. Walsh, “Acceptor
Levels in P-Type Cu2O : Rationalizing Theory and Experiment,”
PHYS. REV. LETT., vol. 103, iss. 9, p. 096405, Aug 2009.
[11] B. K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. J. Klar, T.
Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann,
J. Bläsing, A. Krost, S. Shokovets, C. Müller, and C. Ronning,
“Binary Copper Oxide Semiconductors: From Materials Towards
Devices,” Phys. Statu. Solidi B, vol. 249, iss. 8, pp. 1487-1509, Aug
2012.
[12] M. Hara, T. Kondo, M. Komoda, S. Ikeda, J. N. Kondo, K. Domen,
M Hara, K. Shinohara, and A. Tanaka, “Cu2O as A Photocatalyst for
Overall Water Splitting under Visible Light Irradiation,” Chem.
Commun., vol. 0, iss 3, pp. 357-358, Jan 1998.
[13] H. J. Li, C. Y. Pu, C. Y. Ma, S. Li, W. J. Dong, S. Y. Bao, and Q. Y.
Zhang,“Growth Behavior and Optical Properties of N-Doped Cu2O
Films,” Thin Solid Films, vol. 520, iss. 1, pp. 212-216, Oct 2011.
[14] H. C. Lu, C. L. Chu, C. Y. Lai, and Y. H. Wang, “Property Variations
of Direct-Current Reactive Magnetron Sputtered Copper Oxide Thin
Films Deposited at Different Oxygen Partial Pressures,” Thin Solid
Films, vol. 517, iss. 15, pp. 4408-4412, Jun 2009.
[15] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H.
Hosono, “Room-Temperature Fabrication of transparent Flexible
Thin-Film Transistors Using Amorphous Oxide Semiconductors,”
Nature, vol. 432, no.7016, pp. 488-492, Nov 2004.
[16] R. T. Tung, “Formation of An Electric Dipole at
Metal-Semiconductor Interfaces,” Phys. Rev. B, vol. 64, no. 20, p.
205310, Nov 2001.
83
[17] F. Braet, R. D. Zanger, and E. Wisse, “Drying Cells for SEM, AFM
and TEM by Hexamethyldisilazane: A Study on Hepatic Endothelial
Cells,” J. Microsc-oxford, vol. 186, pp. 84–87, Apr 1997.
[18] A. Schleiermacher, “On the Thermal Conduction of Gas,” Wiedeman.
Ann. Phys., vol. 34, pp. 623-646, 1888.
[19] A. Alexander and G. Gady, “Hot-Probe Method for Evaluation of
Majority Carries Concentration in Semiconductor Thin Films,”
Electronics and Energetics, vol. 26, pp. 187-195, 2013.
[20] X. Ganab, X. Lia, X. Gaoa, and W. Yua, “Investigation on Chemical
Etching Process of ZnO Nanorods Toward Nanotubes,” J. Alloy.
Compd., vol. 481, iss. 1–2, pp. 397-401, Sep 2009.
[21] C. Cardinaud, M. C. Peignon, and P. Y. Tessier, “Plasma Etching:
Principles, Mechanisms, Application to Micro- and
Nano-Technologies,” Appl. Surf. Sci., vol. 164, iss. 1–4, pp. 72-83,
Sep 2000.
[22] A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron Beam
Lithography in Nanoscale Fabrication: Recent Development,” IEEE
T. Electron. Pa. M., vol. 26, no. 2, pp. 141–149, Apr 2003.
[23] J. S. Park, H. J. Park, and Y. B. Hahn, “Dry Etching of ZnO Films
and Plasma-Induced Damage to Optical Properties,”J. Vac. Sci,
Technol. B, vol. 21, no.2, pp. 800-803, Mar-Apr 2003.
[24] H. H. Yeh, “Epitaxial and Characteristization of Cu2O on Cu
Substrate by Molecular Beam Epitax,” Master thesis, NSYSU,
MOES Dept, Kaohsiung, 2016。
[25] K. Chen, C. Sun, S. Song, and D. Xue, “Polymorphic Crystallization
of Cu2O Compound,” Crystengcomm, vol. 16, no. 24, pp. 5257-5267,
2014.
[26] A.A. Ogwu, T.H. Darma, and E. Bouquerel, “Electrical Resistivity of
84
Copper Oxide Thin Films Prepared by Reactive Magnetron
Sputtering,” Adv. Mater. Res-Switz, vol. 24, no. 1, pp. 172-177, Sep
2007.
[27] C. H. Lin, “Electronics Transport Properties in ReS2
Two-dimensional Nanostructures,” Master thesis, NTUST, AST Dept,
Taipei, 2016.
[28] P. Bhattacharya, “Semiconductor Optoelectronic Devices,” Prentice
Hall, New Jersey, vol. 8, pp. 346-351, 1997.
[29] M. Razeghi and A. Rogalski, “Semiconductor Ultraviolet Detectors,”
J. Appl. Phys., vol. 79, no. 10, pp. 7433-7473, May 1996.
[30] R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen,
and Y. J. Yang, “Ultrahigh Photocurrent Gain in M-Axial GaN
Nanowires,” Appl. Phys. Lett., vol. 91, iss. 22, p. 223106, Nov 2007.
[31] R. S. Chen, T. H. Yang, H. Y. Chen, L. C. Chen, K. H. Chen, Y. J.
Yang, C. H. Su, and C.R. Lin, “Photoconduction Mechanism of
Oxygen Sensitization in InN Nanowires,” Nanotechnology, vol. 22,
no. 42, p. 425702, Oct 2011.
[32] R. S. Chen, W. C. Wang, C. H. Chan, H. P. Hsu, L. C. Tien, and Y. J.
Chen, “Photoconductivities in Monocrystalline Layered V2O5
Nanowires Grown by Physical Vapor Deposition,” Nanoscale Res.
Lett., vol. 8, p. 443, Oct 2013.
[33] C. Fabrega, F. Hernandez-Ramirez, J. D. Prades, R. Jimenez-Diaz, T.
Andreu, and J. R. Morante, “On the Photoconduction Properties of
Low Resistivity TiO2 Nanotubes,” Nanotechnology, vol. 21, no. 44,
p. 445703, Nov 2010.

QR CODE