簡易檢索 / 詳目顯示

研究生: 樊政軒
Cheng-Hsuan Fan
論文名稱: 二硫化鉬與硒化銦之高頻時間解析光電導研究
High-Frequency Time-Resolved Photoconduction in MoS2 and InSe
指導教授: 趙良君
Liang -Chiun Chao 
李奎毅
Kuei-Yi Lee 
陳瑞山
Ruei-San Chen
口試委員: 趙良君
Liang -Chiun Chao 
李奎毅
Kuei-Yi Lee 
陳瑞山
Ruei-San Chen
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 76
中文關鍵詞: 二硫化鉬硒化銦高頻時間解析光電導
外文關鍵詞: MoS2, InSe, High-Frequency Time-Resolved, Photoconduction
相關次數: 點閱:400下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討以化學氣相傳導法成長之二硫化鉬(MoS2)及硒化銦(InSe)層狀半導體之高頻時間解析光電導特性。實驗發現二硫化鉬及硒化銦皆存在包含快速及慢速的兩段式光電流響應。為了取得那段快速光電流響應的反應時間(載子活期)(τ1),本研究架設了一套高頻時間解析光電導系統以進行量測。結果顯示二硫化鉬及硒化銦的載子活期最短可分別達到5 μs與10 μs,相對於第二段慢速光電流反應的載子活期(τ2)(>1 s)低了超過五個數量級。進行頻率相依之光電導量測時,發現其載子活期τ_1幾乎不隨雷射光照射頻率的改變而有差異。與其他材料比較起來, τ1皆優於其他層狀半導體ReS2, WS2與MoTe2。在環境相依光電導量測中,發現τ2會受到環境的影響,應是由表面主導的氧敏化光電導機制所造成。然而τ1幾乎不會受到環境的影響,推測是由材料內部的電洞陷阱(hole trap)所造成。在溫度相依之光電導量測,我們發現隨著溫度降低,τ1會隨之變長。藉由定量分析,可得到二硫化鉬和硒化銦的電洞陷阱之活化能約為1.9 meV和4.6 meV。


    The high-frequency time-resolved photoconduction properties in molybdenum disulfide (MoS2) and indium selenide (InSe) single crystals grown by chemical vapor transport (CVT) have been investigated. We observe that both MoS2 and InSe exhibited the two-stage photocurrent response including a rapid response and a slow response. To investigate the rapid response time (i.e. carrier lifetime) ( τ1), a high-frequency time-resolved photoconductivity measurement system has been set up. The result shows that the τ1 values of the rapid photoresponse for the MoS2 and InSe can reach 5 μs and 10 μs respectively, which are over five orders of magnitude lower than the second and slower response times (τ2)(>1 s). The τ1 values are lower than many photoconductors based on layered semiconductors, such as ReS2, WS2 and MoTe2. In addition, τ_1 is independent on the light frequency and measurement ambience, which is different from the ambience-sensitive τ2 induced by the surface-dominant oxygen-sensitized photoconduction mechanism. It is inferred that τ1 values are determined by the hole trapping mechanism in the inner bulks. The temperature-dependent photoconductivity measurements indicate that activation energies of shallow-level hole traps are 1.9 meV for MoS2 and 4.6 meV for InSe layered crystals.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究背景介紹 1 1.2 研究動機 2 1.3高頻率時間解析光電導量測系統 4 第二章 材料介紹 5 2.1 二硫化鉬 5 2.1.1二硫化鉬材料介紹 5 2.1.2二硫化鉬之晶體成長 5 2.2硒化銦 7 2.2.1硒化銦材料介紹 7 2.2.2硒化銦之晶體成長 7 第三章 實驗介紹 8 3.1 二硫化鉬和硒化銦層狀半導體之形貌與結構特性檢測 8 3.1.1 掃描式電子顯微影像分析(Scanning Electron Microscopy Image Analysis) 8 3.1.2 拉曼散射光譜分析(Raman Scattering Spectroscopy) 10 3.1.2 X光繞射分析 (X-ray Diffractometry Analysis) 12 3.2 二硫化鉬及硒化銦層狀塊材元件製作 14 3.3 塊材結構之暗電導特性研究 14 3.3.1 電流對電壓曲線量測(Current-Voltage Measurement) 16 3.4 塊材結構之光電導特性研究 16 3.4.1光電導曲線量測(Photoconductivity Curve Measurement) 18 3.4.2 高頻率解析時間之光電導量測(High-Frequency Time-Resolved Photoconductivity Measurement) 19 3.4.2.1 頻率及波長相依之光電導量測(Frequency-Dependent and Wavelength-Dependent Photoconductivity Measurement) 22 3.3.2.2 環境及溫度相依之光電導量測(Ambience-Dependent and Temperature-Dependent Photoconductivity Measurement) 22 第四章 結果與討論 25 4.1二硫化鉬及硒化銦層狀塊材之表面形貌與結構分析 25 4.1.1 表面形貌 25 4.1.2晶體結構 27 4.2 二硫化鉬及硒化銦塊材結構元件製作 31 4.3二硫化鉬及硒化銦塊材結構電導特性研究 32 4.3.1電流對電壓曲線量測 32 4.4二硫化鉬及硒化銦塊材結構之光電導特性研究 34 4.4.1光電導曲線量測 35 4.4.2高頻率時間解析之光電導量測 38 4.4.2.1 頻率相依之光電導量測 41 4.4.2.2 波長及頻率相依之光電導量測 44 4.4.2.3 環境變化之光電導量測 48 4.4.2.4 氧氣敏化光電導機制 51 4.4.2.5 溫度相依之光電導量測 53 第五章 結論 57 參考文獻 58

    [1]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, vol. 306, no. 5696, pp. 666-669, Oct 2004.
    [2]K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-Dimensional Atomic Crystals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, pp. 10451-10453, July 2005.
    [3]A. K. Geim and K. S. Novoselov, “The Rise of Graphene,” Nat. Mater., vol. 6, no. 3, pp. 183-191, Mar 2007.
    [4]S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano, vol. 7, no. 4, pp. 2898-2926, Apr 2013.
    [5]Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides,” Nat. Nanotech., vol. 7, no. 11, pp. 699-712, Nov 2012.
    [6]S. Das, R. Gulotty, A. V. Sumant, and A. Roelofs, “All Two-Dimensional, Flexible, Transparent, and Thinnest Thin Film Transistor,” Nano Lett., vol. 14, no. 5, pp. 2861-2866, May 2014.
    [7]B. Radisavljevic, A. Radenovic, J. Brivio, V.Giacometti, and A. Kis, “Single-Layer MoS2 Transistors,” Nat. Nanotech., vol. 6, no. 3, pp. 147-150, Mar 2011.
    [8]K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 Hybrid Structures for Multifunctional Photoresponsive Memory Devices,” Nat. Nanotech., vol. 6, no. 11, pp. 826-830, Nov 2013.
    [9]W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M.L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, “Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures,” Sci. Rep., vol. 4, p. 3826, Jan 2014.
    [10]C. J. Liu, S. Y. Tai, Y. C. Yu, K. D. Chang, S. Wang, F. S. S. Chien, J. Y. Lin, and T. W. Lin, “Facile Synthesis of MoS2/Graphene Nanocomposite with High Catalytic Activity Toward Triiodide Reduction in Dye-Sensitized Solar Cells,” J. Mater. Chem., vol. 22, no. 39, pp. 21057-21064, Aug 2012.
    [11]D. A. Bandurin, A. V. Tyurnina, G. L. Yu, A. Mishchenko, V. Zolyomi, S. V. Morozov, R. K. Kumar, R. V. Gorbachev, Z. R. Kudrynskyi, S. Pezzini, Z. D. Kovalyuk, U. Zeitler, K. S. Novoselov, A. Patane, L. Eaves, I. V. Grigorieva, V. I. Fal’ko, A. K. Geim, and Y. Cao, “High Electron Mobility, Quantum Hall Effect and Anomalous Optical Response in Atomically Thin InSe,” Nat. Nanotech., vol. 12, no. 3, pp. 223-227, Mar 2017.
    [12]H. W. Yang, H. F. Hsieh, R. S. Chen, C. H. Ho, K. Y. Lee, and L. C. Chao, “Ultraefficient Ultraviolet and Visible Light Sensing and Ohmic Contacts in High-Mobility InSe Nanoflake Photodetectors Fabricated by the Focused Ion Beam Technique,” ACS App. Mater. Inter., vol. 10, no. 6, pp. 5740-5749, Feb 2018.
    [13]W. C. Shen, R. S. Chen, and Y. S. Huang, “Photoconductivities in MoS2 Nanoflake Photoconductors,” Nanoscale Res. Lett., vol. 11, no. 124, Mar 2016.
    [14]K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett., vol. 105, p. 136805, Sep 2010.
    [15]A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging Photoluminescence in Monolayer MoS2,” Nano Lett., vol. 10, no. 4, pp. 1271-1275, Apr 2010.
    [16]P. E. J. Flewitt and R. K. Wild, “Physical Methods for Materials Characterization,” IOP Publishing, Bristol, 1994.
    [17]許樹恩和吳泰伯, “X光繞射原理與材料結構分析” ,彩言商業設計社,2004.
    [18]B. D. Cullity and S. R. Stock, “Elements of X-ray Diffraction,” Prentice Hall, New Jersey, 2001.
    [19]A. Beiser, “Concepts of Modern Physics,” McGraw-Hill Education (India) Pvt Limited, 2003.
    [20]K. K. Kam and B. A. Parkinson, “Detailed Photocurrent Spectroscopy of the Semiconducting Group VIB Transition Metal Dichalcogenides,” J. Phys. Chem., vol. 86, no. 4, pp. 463-467, Feb 1982.
    [21]K. K. Tiong, P. C. Liao, C. H. Ho, and Y. S. Huang, “Growth and Characterization of Rhenium-Doped MoS2 Single Crystals,” J. Crystal Growth, vol. 205, no. 4, pp. 543-547 , Sep 1999.
    [22]S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the Electronic Band Structure and Efficient Photo-Detection in Atomic Layers of InSe,” ACS Nano, vol. 8, no. 2, pp. 1263-1272, Jan 2014.
    [23]H. W. Yang, “The Study of InSe Nanostructure Photoconductivity Characterization,” Master thesis, NTUST, ACT Dept, Taipei, 2017.
    [24]M. D. Siao, “Surface Electron Accumulation and Electronic Transport in MoS2 Layer Semiconductors,” Master thesis, NTUST, ACT Dept, Taipei, 2017.
    [25]P. Bhattacharya, “Semiconductor Optoelectronic Devices,” Prentice Hall, New Jersey, vol. 8, pp. 346-351, 1997.
    [26]M. Razeghi and A. Rogalski, “Semiconductor Ultraviolet Detectors,” J. Appl. Phys., vol. 79, no. 15, pp. 7433-7473, May 1996.
    [27]R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, “Ultrahigh Photocurrent Gain in M-Axial GaN Nanowires,” Appl. Phys. Lett., vol. 91, p. 223106, Nov 2007.
    [28]S. Yang, S. Tongay, Q. Yue, Y. Li, B. Li, and F. Lu, “High-Performance Few-Layer Mo-Doped ReSe₂ Nanosheet Photodetectors,” Sci. Rep., vol. 4, p. 5442, Jun 2014.
    [29]P. Hu, Z. Wen, L. Wang, P. Tan, and K. Xiao, “Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors,” ACS Nano, vol. 6, no. 7, pp. 5988-5994, Jun 2012.
    [30]X. Zhou, Q. Zhang, L. Gan, H. Li, and T. Zhai, “Large-Size Growth of Ultrathin SnS2 Nanosheets and High Performance for Phototransistors,” Adv. Funct. Mater., vol. 26, no. 24, pp. 4405-4413, Jun 2016.
    [31]F. Liu, H. Shimotani, H. Shang, T. Kanagasekaran, V. Zolyomi, N. Drummond, V. I. Fal’ko, and K. Tanigaki, “High-Sensitivity Photodetectors Based on Multilayer GaTe Flakes,” ACS Nano, vol. 8, no. 1, pp. 752-760, Jan 2014.
    [32]J. Zhou, Q. Zeng, D. Lv, L. Sun, L. Niu, W. Fu, F. Liu, Z. Shen, C. Jin, and Z. Liu, “Controlled Synthesis of High-Quality Monolayered α–In2Se3 via Physical Vapor Deposition,” Nano Lett., vol. 15, no. 10, pp. 6400-6405, Sep 2015.
    [33]N. Perea-López, A. L. Elias, A. Berkdemir, A. Castro-Beltran, H. R. Gutierrez, S. Feng, R. Lv, T. Hayashi, F. Lopez-Urias, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, “Photosensor Device Based on Few-Layered WS2 Films,” Adv. Funct. Mater., vol. 23, no. 44, pp. 5511-5517, Nov 2013.
    [34]M. Hafeez, L. Gan, H. Li, Y. Ma, and T. Zhai, “Large-Area Bilayer ReS2 Film/Multilayer ReS2 Flakes Synthesized by Chemical Vapor Deposition for High Performance Photodetectors,” Adv. Funct. Mater., vol. 26, no. 25, pp. 4551-4560, Jul 2016.
    [35]T. J. Octon, V. K. Nagareddy, S. Russo, M. F. Craciun, and C. D. Wright, “Fast High-Responsivity Few-Layer MoTe2 Photodetectors,” Adv. Opt. Mater., vol. 4, no. 11, pp. 1750-1754, Aug 2016.
    [36]W. Luo, Y. Cao, P. Hu, K. Cai, Q. Feng, F. Yan, T. Yan, X. Zhang, and K. Wang, “Gate Tuning of High-Performance InSe-Based Photodetectors Using Graphene Electrodes,” Adv. Opt. Mater., vol. 3, no. 10, pp. 1418-1423, Oct 2015.
    [37]J. Kim, C. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taiguchi, S. Tongay, M. F. Crommie, and F. Wang, “Observation of Ultralong Valley Lifetime in WSe2/MoS2 Heterostructures,” Sci. Adv., vol. 3, no. 7, p. e1700518, Jul 2017.
    [38]S. Ghosh, P. D. Patil, M. Wasala, S. Lei, A. Nolander, P. Sivakumar, R. Vajtai, P. Ajayan, and S. Talapatra, “Fast Photoresponse and High Detectivity in Copper Indium Selenide (Cu/In7Se11) Phototransistors,” 2D Materials, vol. 5, no.1, p. 015001, Mar 2018.
    [39]G. Su, V. G. Hadjiev, P. E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M. Ajayan, J. Lou, and H. Peng, “Chemical Vapor Deposition of Thin Crystals of Layered Semiconductor SnS2 for Fast Photodetection Application,” Nano Lett., vol. 15, no. 1, pp. 506-513, Jan 2015.
    [40]Y. H. Huang, R. S. Chen, J. R. Zhang, and Y. S. Huang, “Electronic Transport in NbSe2 Two-Dimensional Nanostructures: Semiconducting Characteristics and Photoconductivity,” Nanoscale, vol. 7, no. 45, pp. 18964-18970, Oct 2015.
    [41]H. C. Yang, T. Y. Lin, and Y. F. Chen, “Persistent Photoconductivity in InGaN/GaN Multiquantum Wells,” Appl. Phys. Lett., vol. 78, no. 3, pp. 338-340, Jan 2001.

    QR CODE