簡易檢索 / 詳目顯示

研究生: 鄭嘉峰
Jia-fong Jeng
論文名稱: 透過模型預估偏航轉矩控制法完成車輛翻覆預防
Vehicle Rollover Prevention through Model Predictive Direct Yaw Moment Control
指導教授: 陳亮光
Liang-kuang Chen
口試委員: 黃緒哲
none
姜嘉瑞
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 55
中文關鍵詞: 模型預估控制法翻覆預防車速更新
外文關鍵詞: model predictive control, rollover prevention, speed update
相關次數: 點閱:317下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 就翻覆預防控制器而言,使用差動煞車(Differential braking)或直接偏航轉矩(Direct Yaw-moment Control, DYC)之控制在近年來備受重視,本研究使用模型預估控制法(model predictive control, MPC)設計DYC,因為MPC對未來系統狀態的預期行為與駕駛人之操控行為類似,相當適合本研究於設計DYC以輔助駕駛人操控所需。然而透過此手段設計控制器時,車輛受到控制器之煞車命令作動後,將會造成縱向速度隨之遞減的問題。速度之改變導致車輛動力學產生顯著的變化,因此於MPC之計算中需考慮受控系統之模型的變化。
    本研究於MATLAB/SIMULINK中建立車輛模型、駕駛人模型以及DYC後,進一步討論DYC於四種條件設定下的模擬結果,分別為考慮駕駛人模型存在與否以及更新車速與否,經模擬結果顯示考慮駕駛人模型存在以及具有車速更新能力之DYC設計,不但抑制翻覆角峰值約30%,另外亦有輔助駕駛人進行路徑追蹤之能力;而其他三種條件設定中,不但降低車輛的路徑追蹤能力,亦發生翻覆角有不減反增之情形。
    在完成電腦模擬後,本研究並透過縮小型車輛平台進行實驗,透過實際駕駛人控制前輪轉向角以達成雙車道變換之任務,以評估加入DYC抑制翻覆的效果。實驗結果顯示本研究所設計的DYC在車輛進行激烈的車道變換時,仍然輸出合適的偏航轉矩以有效的抑制翻覆動作,亦即達到翻覆預防的效果。


    The application of differential braking or direct yaw moment control (DYC) for vehicle roll-over prevention receives increasing attentions in recent years. In this research the model predictive control (MPC) technique is employed to design the DYC for rollover prevention. The predictive nature of the MPC resembles human’s vehicle driving characteristics, and is therefore a intuitive choice for the rollover prevention control design. Due to the braking actions resulted from the DYC, the vehicle longitudinal velocity is reduced, and the reduction in vehicle speed causes significant changes in the vehicle dynamics. Therefore, how to incorporate the variation in speed in the MPC design is investigated in this research, and the modified design is evaluated using computer simulations and experiments with a scaled vehicle.
    The vehicle model, driver model, and the DYC are implemented as mathematical models in MATLAB/SIMULINK. The performance of the controller is evaluated by several sets of simulation scenarios, with different choices of driver models and vehicle speed settings. The simulations indicate that with a proper driver steering control model in the loop, and the internal model used in MPC updated on-line with varying speed, the DYC generates the most appropriate rollover prevention actions. The peak value of roll angle is reduced by approximately 30%, while maintaining slight improvement in lateral position tracking. The other choices may result in degradation in lateral position tracking, or even worsen the rollover motion.
    The DYC design is also evaluated on a scaled vehicle setup, through a human driver controlling the steering actions. The experimental results indicate that the designed DYC can provide reasonable improvement to rollover prevention under double lane change maneuver.

    第一章 緒論 1.1 前言 1.2 文獻探討 1.2.1 翻覆指標 1.2.2 差動煞車與直接偏航轉矩控制法 1.2.3 懸吊系統與防傾桿裝置 1.2.4 MPC法應用於車輛控制 1.2.5 縮小型車輛 1.2.6 文獻總結與論文目標 1.3工作項目 1.4 預期貢獻 第二章 控制架構與模型 2.1 三自由度線性車輛動力學 2.1.1 加入道路座標方程式與縱向車速方程式 2.2 駕駛人模型 第三章 透過MPC設計翻覆預防之DYC 3.1 MPC背景 3.2 DYC控制器 3.3 線上更新車速之DYC 3.4 控制器設計總結第四章 模擬結果與討論 4.1 模擬環境 4.2 透過lookup table產生預期路徑 4.3 線性回授駕駛人模型於不同車速下之模擬結果 4.4 具有車速更新之DYC模擬結果與討論 4.5 不具有車速更新之DYC模擬結果與討論 4.6 模擬總結 第五章 硬體設備與感測器應用 5.1 縮小型車輛 5.2輸送帶 5.3 I/O介面卡 5.4 DT60雷射測距儀 5.5 傾斜儀 5.6 縮小車速度求法 5.7 縮小型車輛之參數量測 5.7.1 縮小型車輛之平面重心量測 5.7.2 縮小型車輛之高度重心量測 5.8 縮小型車輛之偏航角與重心位置計算第六章 實驗規劃與結果 6.1 縮小車參數定義及其極零點分佈 6.2 驗證縮小車模型之動態響應正確性 6.3 實驗規劃 6.3.1 路徑規劃與初速設定 6.3.2 實際駕駛人行為操控 6.3.3 煞車力與馬達轉速電壓之關係式 6.4 縮小車模型之模擬結果與討論 6.5 實驗結果與討論 第七章 結論與未來展望 7.1 結論 7.2 未來展望參考文獻

    [1]http://www.motc.gov.tw/motchypage/view95/d4210.xls
    [2]Gillespie, T. D., “Fundamentals of Vehicles Dynamics”, SAE International
    [3]Chen, B. C., and Peng, H., “Differential-braking-based rollover prevention for utility vehicle with human-in-the-loop evaluation,” Vehicle System Dynamics, v 36, n 4-5, 2001, pp 359-389
    [4]Johansson, B., and Gafvert, M., “Untripped SUV rollover detection and prevention,” IEEE Conference on Decision and Control (CDC), 2004, pp 5461-5466
    [5]Choi, S. B., “Practical vehicle rollover avoidance control using energy method” Vehicle System Dynamics, v 46, n 4, April, 2008, pp 323-337
    [6]Yi, K., Chung, T., Kim, J., and Yi, S., “An investigation into differential braking strategies for vehicle stability control,” Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, v 217, n 12, 2003, pp 1081-1094
    [7]Wielenga, T. J., “A method for reducing on-road rollovers: anti-rollover braking,” SAE Paper, 1999, No. 1999-01-0123
    [8]Lewis, A. S., and El-Gindy, M., “Sliding mode control for rollover prevention of heavy vehicles based on lateral acceleration,” Heavy Vehicle Systems, v 10, n 1-2, 2003, pp 9-34
    [9]Trent, V., and Green, M., “A Genetic Algorithm Predictor for Vehicular Rollover,” Industrial Electronics Conference, v 3, 2002, pp 1752-1756
    [10]Lugner, P., Heinzl, P., and Plochl, M., “Yaw moment control of a passenger car by unilateral braking or additional steering,” Mini Conference on Vehicle System Dynamics, Identification and Anomalies, 2000, pp.23-24
    [11]Zeyada,Y., Karnopp, D., El-Arabi, M., El-Behiry, and El-Sayed, “Combined active steering differential braking yaw rate control strategy for emergency maneuvers,” SAE Special Publications, Feb, Vehicle Dynamics and Simulation , v 1361, 1998, pp 97-102
    [12]Goodarzi, A., and Esmailzadeh, E., “An optimal vehicle stability enhancement strategy for articulated vehicles,” ASME International Mechanical Engineering Congress and Exposition, 2006, pp9
    [13]Pilutti, T., Ulsoy, A. G., and Hrovat, D., “Vehicle Steering Intervention Through Differential Braking,” American Control Conference, v 3, n Suppl, 1996, pp 502-518
    [14]Yoon, J., Kim, D., and Yi, K., “Design of a rollover index-based vehicle stability control scheme,” Vehicle System Dynamics, v 45, n 5, 2007, pp 459-475, (also appeared in AVEC'06: 8th International Symposium on Advanced Vehicle Control).
    [15]Yang, H., and Liu, L. Y., “A Robust Active Suspension Controller With Rollover Prevention,” SAE, 2003
    [16]Hac, A., “Rollover Stability Index Including Effects of Suspension Design,” SAE, Inc., 2002
    [17]Shim, T., and Velusamy, P., “Influence of Suspension Properties on Vehicle Roll Stability,” SAE, 2006
    [18]Gaspar, P., Szabo, Z., and Bokor, J., “Prediction Based Combined Control To Prevent The Rollover Of Heavy Vehicle,” 20th IEEE International Symposium on Intelligent Control, ISIC '05 and the 13th Mediterranean Conference on Control and Automation, MED '05, 2005, pp 575-580
    [19]Lee, Y., “Coordinated control of steering and anti-roll bars to alter vehicle rollover tendencies,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, v 124, n 1, March, 2002, pp 127-132
    [20]Lin, R. C., Cebon, D., and Cole, D. J., “Active roll control of articulated vehicles,” Vehicle System Dynamics, v 26, n 1, Jul, 1996, pp 17-43
    [21]Seki, Y., Ohya, J., and Miyoshi, M., “Collision avoidance system for vehicles applying Model Predictive Control theory,” ITSC, 1999, pp 453-458
    [22]Bageshwar, V. L., Garrard, W. L., and Rajamani, R., “Model predictive control of transitional maneuvers for adaptive cruise control vehicles,” IEEE Transactions on Vehicular Technology, v 53, n 5, September, 2004, pp 1573-1585
    [23]Ungoren, A. Y., and Peng, H., “An adaptive lateral preview driver model,” Vehicle System Dynamics, Vol. 43, No. 4, April 2005, pp 245-259
    [24]Falcone, F. P., Keviczky, T., Asgari, J., and Hrovat, D., “MPC-based approach to active steering for autonomous vehicle systems,” International Journal of Vehicle Autonomous Systems, v 3, n 2-4, 2005, pp 265-291
    [25]Carlson, C. R., and Gerdes, J. C., “Optimal Rollover Prevention with steer-by-wire and differential Braking,” ASME Dynamics Systems and Control Division, 2003, v72, n1, pp. 345-354.
    [26]Brennan, S., and Alleyne, A., “Robust scalable vehicle control via non-dimensional vehicle dynamics A case study in anti-lock braking Source,” Vehicle System Dynamics, v 36, n 4-5, November, 2001, pp 255-277
    [27]Longoria, R. G., Al-Sharif, A., and Patil, C. B., “Scaled vehicle system dynamics and control: A case study in anti-lock braking,” International Journal of Vehicle Autonomous Systems, v 2, n 1-2, 2004, pp 18-39
    [28]Pushkin, K., “Setup for advanced vehicle control system experiments in the flexible low-cost automated scaled highway (FLASH) laboratory,” SPIE-The International Society for Optical Engineering, vol.2591, pp.269-278
    [29]Travis, W. E., Whitehead, R. J., Bevly, D. M., and Flowers, G. T., “Using scaled vehicles to investigate the influence of various properties on rollover propensity,” American Control Conference, American Control Conference (AAC), v 4,2004, pp 3381-3386
    [30]Brennan, S. N., “On Size and Control: The Use of Dimension Analysis in Controller Design,” Doctor thesis, Department of Mechanical Engineering, University of Illinois at Urbana-Champaign, 2002.
    [31]Ulsoy, A. G., and Peng, H., “Vehicle Control System,” Lecture Notes for ME 568, University of Michigan, 1997.
    [32]Camacho, E. F., and Bordons, C., “Model Predictive Control”, Springer, London, 2004
    [33]MacAdam, C. C., “An optimal preview control for linear system,” ASME, v 102, n 3, sep., 1980, pp 188-190
    [34]Salaani, M. K., Peng, H., and Heydinger, G. J., “Vehicle Dynamics Modeling for the National Advanced Driving Simulator of a 1997 Jeep Cherokee,” SAE World and Exposition, Detroit, MI. SAE paper, 1999.
    [35]許聖勇, “車輛安全系統研究之大型車輛翻覆預防,” 國立台灣科技大學機械工程系碩士論文, 2006

    無法下載圖示 全文公開日期 2011/01/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE