簡易檢索 / 詳目顯示

研究生: 鄭景綸
Ching-Lun Cheng
論文名稱: 雙頻壓控振盪器與使用特殊注入架構的注入鎖定除頻器之研究
Research of Dual-Band Voltage-Controlled Oscillator and Injection Locked Frequency Divider Using Special Injection Topology
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 黃進芳
Jhin-Fang Huang
徐敬文
Ching-Wen Hsue
楊賜麟
Tzu-Lin Yang
鄧恒發
Heng-Fa Teng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 129
中文關鍵詞: 雙頻壓控振盪器注入鎖定除頻器四相位鬆餅狀電晶體
外文關鍵詞: Dual-band, VCO, ILFD, Quadrature, Waffle MOSFET
相關次數: 點閱:260下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

頻率合成器是用來做訊號頻率的升降之用,其必須滿足嚴格的要求,故它的設計乃是射頻系統中最具挑戰的一環。其中,壓控振盪器與除頻器更是頻率合成器電路裡的核心電路之ㄧ。對壓控振盪器而言,必須提供低相位雜訊的輸出,以避免相鄰雜訊訊號經由混波轉換產生干擾。而壓控振盪器的輸出會經由除頻器降頻至與參考訊號相同的等級,與相位頻率偵測器做比較以校正壓控振盪器的輸出,故除頻器需要有高頻操作的能力。由於應用於無線通訊系統中,壓控振盪器與除頻器都必須要有低功耗的特性。
本論文提出了兩個壓控振盪器與一個除頻器電路。其中壓控振盪器是使用兩組變容器串聯的BBS(back-back-series)架構振盪器。一個四相位雙頻壓控振盪器,雙頻帶具有很大的輸出振幅大小。以上電路使用台積電90奈米CMOS製程來完成。另一個使用鬆餅狀電晶體做注入混波的注入鎖定除頻器,使用0.35微米CMOS製程去實現。
首先,我們呈現一個使用鬆餅狀架構注入電晶體當混波的電路,與一般傳統電晶體不同的是新架構注入電晶體能有效降低汲/源集間的寄生效應,又因為藉由減少電晶體使用面積,所以能改善混波之後注入鎖定除頻電路使我們可以得到更佳的除二的功能。當供給電壓為0.9 V時,在注入強度為0dBm時,其除二模數的鎖頻範圍為4.25至6.35GHz。
其次,我們提出一個將p型交叉耦合對與n型Colpitts交叉對組成的LC振盪器、透過BBS變容器架構改善相位雜訊之壓控振盪器的技術。當控制電壓由0到1.15 V變化時,壓控振盪器的低頻帶可由6.11 GHz調到6.413 GHz,而高頻帶則由9.72 GHz到10.24 GHz。而在低頻帶輸出頻率6.4GHz,所量測到的相位雜訊在1 MHz位移時為-122.79 dBc/Hz。
最後,我們討論一個四相位雙頻壓控振盪器,其架構是由N型交叉耦合對的雙共振腔壓控振盪器,與利用P型上方堆疊環形機制產生四相位輸出。當供給電壓為1V,其功耗為4.85mW,壓控振盪器的低頻帶可由4.81 GHz調到5.6 GHz,而高頻帶則由9.67 GHz到10.33 GHz。而在高頻帶輸出頻率9.67GHz,所量測到的相位雜訊在1 MHz位移時為-114.84 dBc/Hz。


Frequency synthesizers are used to implement for the frequency up/down converting of signal. Because they have to meet a strict requirement, frequency synthesizers still be the most challenging part of RF system design. In a frequency synthesizer, voltage-controlled oscillator (VCO) and frequency divider are the key building blocks. For VCOs, low phase-noise outputs are required to avoid corrupting the mixer-converted signal by close interfering tones. The frequency of output signal of VCOs is divided down to the level of reference signal, and is compared with reference signal by a phase frequency detector (PFD) to adjust the outputs of VCOs. Therefore the frequency dividers must have the ability of high frequency operation. Because of wireless application, both of them should operate at low power consumption.
This thesis proposes two VCOs and one frequency divider. The VCO utilizes BBS (back-back-series) topology with two pairs of varactor in series. One is QVCO which output powers at both bands are large. The above circuits are fabricated in the TSMC 90 nm CMOS process. Another one is ILFD (Injection locked frequency divider) which applies waffle-like transistor as a mixer in the TSMC 0.35μ m CMOS process.
Firstly, we present an ILFD injection MOSFET which is based on a waffle-like transistor as a mixer. The difference between waffle-like transistor and the traditional one is the waffle-like topology can efficiently reduce parasitic effects of drain/source junction area. Because the new topology can also decrease the overall area of injection transistor, it can improve the divide function of ILFD after mixing the injection signal. At the supply voltage of 0.9 V, at the incident power of 0 dBm the locking range in the divide-by-2 mode is from the incident frequency 4.25 to 6.35 GHz.
Secondly, we propose a LC resonator with a p-type cross-coupled pair and an n-type Colpitts cross-coupled pair. Through BBS varator topology, it improves the phase noise of the VCO. The oscillating low-band frequency of the VCO can be tuned from 6.11 GHz to 6.413 GHz, and the oscillating high-band frequency of the VCO can be tuned from 9.72 GHz to 10.24GHz while the tuning voltage varies from 0 V to 1.15 V. The phase noise of the low band oscillation frequency 6.4 GHz is -122.79 dBc/Hz at 1 MHz frequency offset.
Finally, a dual-band quadrature voltage-controlled oscillator (QVCO) comprises two n-core cross-coupled dual-resonance VCOs and top-stacked pMOSFETs for quadrature phase generation. At the supply voltage of 1 V, the total power consumption is 4.85 mW. The free-running frequency of the QVCO is tunable from 9.67/4.81 GHz to 10.33/5.6 GHz as the tuning voltage is varied from 0.0/0.6 V to 0.55/1.2 V. The measured phase noise at 1MHz frequency offset is -114.84 dBc/Hz at the oscillation frequency of 9.67 GHz.

中文摘要 I Abstract III 致謝 VI Contents VII List of Figures IX List of Tables XII CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 3 CHAPTER 2 OVERVIEWS OF OSCILLATORS AND INJECTION LOCKED PHENOMENON 5 2.2 BASIC THEORY OF OSCILLATORS 7 2.2.1 ONE-PORT (NEGATIVE RESISTANCE) VIEW 8 2.2.2 TWO-PORT (FEEDBACK) VIEW 11 2.3 PARALLEL RLC TANK 14 2.3.1 RESISTORS 15 2.3.2 INDUCTOR AND TRANSFORMER 16 I. INDUCTOR 16 II. TRANSFORMER 25 2.3.3 CAPACITORS AND VARACTORS 30 I. CAPACITORS 30 II. MOSFET VARACTORS 32 2.4 DES IGN CONCEPTS OF VCOS 37 2.4.1 VCO CHARACTERISTIC PARAMETERS 38 2.4.2 PHASE NOISE IN OSCILLATORS 40 2.4.3 QUALITY FACTOR 48 2.5 LC-TANK OSCILLATORS 51 2.5.1 COLPITTS AND HARTLEY OSCILLATORS 51 2.5.2 NEGATIVE-GM OSCILLATORS 52 2.6 INJECTION LOCKED PHENOMENON 54 2.6.1 PRINCIPLE OF INJECTION LOCKING 55 2.6.2 OPERATION RANGE 57 2.6.3 ILFD’s Fundamental Block Diagram 60 2.7 DUAL-BAND PHENOMENON 61 2.7.1 Dual-band resonator 62 2.7.2 Two Series-LC Resonators 64 2.8 QUADRATURE VCO DESIGN 65 CHAPTER 3 A 0.35-μm CMOS Frequency Divider Implemented with the Waffle Injection MOSFET 73 3.1 INTRODUCTION 73 3.2 CIRCUIT DESIGN 74 3.3 MEASUREMENT RESULTS 76 3.4 CONCLUSION 83 CHAPTER 4 A Dual-Resonance CMOS Voltage-Controlled Oscillator with Enhanced Performance through New Varactor Topology 84 4.1 INTRODUCTION 84 4.2 CIRCUIT DESIGN 86 4.3 MEASUREMENT AND DISCUSSION 89 4.4 CONCLUSION 92 CHAPTER 5 CMOS Dual-Band Quadrature VCOs with Large Output Powers at Both Bands 93 5.1 INTRODUCTION 93 5.2 CIRCUIT DESIGN 94 5.3 RESULTS AND DISCUSSION 99 5.4 CONCLUSION 104 CHAPTER 6 CONCLUSION 105 REFERENCES 108 作者簡介 113

[1] N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 810-820, May 1992.
[2] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
[3] J. Roggers, C. Plett, Radio frequency integrated circuit design, Artech House, 2003.
[4] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
[5] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
[6] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997.
[7] P. Yue, C. Ryu, JackLau, T. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996.
[8] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
[9] E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, pp. 661-664, June 1989.
[10] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[11] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10 Feb. 2005.
[12] J.J. Rael, and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569–572, 2000.
[13] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326–336, Mar. 2000.
[14] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
[15] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
[16] A. Hajimiri and T. H. Lee, “Design Issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717–724, May 1999.
[17] J. Craninckx, and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 μm CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, Jul. 1996.
[18] Q. Huang, and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
[19] J. Lee, and B. Razavi, “A 40 GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
[20] H. R. Rategh, and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, Jun. 1999.
[21] H. D. Wohlmuth, and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sep. 2002.
[22] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 μm standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
[23] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
[24] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, Jun. 2001.
[25] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, Jul. 2002.
[26] W. Wu, S. Lam, and M. Chan, “A wide-band T/R switch using enhanced compact waffle MOSFETs,” IEEE Microwave Wireless Components Lett. 16, 287-289. 2006.
[27] S. Lam, P.K.T. Mok, W.H. Ki, P.K. Ko and M. Chan, “An enhanced compact waffle MOSFET with low drain capacitance from a standard submicron CMOS technology,” Solid-State Electronics, Vol. 47, pp. 785-789, May 2003.
[28] W. Y. Chen and and M. D. Ker, “Circuit and layout co-design for ESD protection in bipolar-CMOS-DMOS (BCD) high-voltage process,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 5, pp. 1039–1047, 2010.
[29] J. S. Chang, M.-T. Tan, Z. Cheng, and Y.-C. Tong, “Analysis and design of power efficient class D amplifier output stages,” IEEE Trans. Circuits Syst. I, vol. 47, no. 6, pp. 897–902, 2000.
[30] W. Wu, S. Lam, and M. Chan,”Effects of layout methods of RF CMOS on noise performance,” IEEE Trans. Electron Devices, Vol. 52, pp.2753-2759, Dec.2005.
[31] W. Wu, S. Lam, and M. Chan, ” A wide-band T/R switch using enhanced compact Waffle MOSFETs,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp.287-289, 2006.
[32] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, pp. 1170 – 1174, July 2004.
[33] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injection-locked divider,” in IEEE Int. Solid-State Circuits Conf. Dig., Feb. 2006, pp. 600–601.
[34] K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa, "A 0.114-mW dual-conduction class-C CMOS VCO with 0.2-V power supply," IEEE Symp. VLSI Circuits, pp.228-229, Kyoto, June 2009.
[35] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” ISSCC Digest of Tech. Papers. pp. 412-413, Feb. 2001.
[36] S.-L. Jang, C.-W. Lin, C.-C. Liu, and M.-H. Juang, " Tail-injected divide-by-4 quadrature injection locked frequency divider, " Int. J. Electronics. Vol. 96, No. 12, pp.1225-1235, 2009.
[37] S.-L. Jang, C.-C. Liu, R.-K. Yang, C.-C. Shih, and C.-W. Chang, “A 0.35 μm CMOS divide-by-2 quadrature injection-locked frequency divider based on voltage-current feedback topology”, Microelectronics Reliability, 50, pp.594–598, 2010.
[38] S.-L. Jang, C.-Y. Lin, and C.-F. Lee, ” A low voltage 0.35 μm CMOS frequency divider with the body injection technique,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp.470-472, July, 2008.
[39] A. Kral, F. Behbahani and A. A. Abidi, “RF-CMOS oscillators with Switched Tuning,” in Proc. IEEE CICC, May 1998, pp. 555–558.
[40] L. Jia, J. G. Ma, K. S. Yeo, X. P. Yu, M. A. Do and W. M. Lim, “A 1.8-V 2.4/5.15-GHz dual-band LC VCO in 0.18-um CMOS technology,” IEEE Microwave Wireless Compon. Lett., vol. 16, no. 4, pp. 194–196, Apr. 2006.
[41] S.-M. Yim and Kenneth K. O, “Demonstration of a switched resonator concept in a dual-band monolithic CMOS LC-tuned VCO,” in Proc. IEEE CICC, May 2001, pp. 205–208.
[42] Z. Li and K. K. O, “A low-phase-noise and low-power multiband CMOS voltage-controlled oscillator,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1296–1302, Jun. 2005.
[43] H.-L. Kao, D. Y. Yang, Y. C. Chang, B. S. Lin, and C. H. Kao, “Switched resonators using adjustable inductors in a 2.4/5 GHz dual-band LC VCO,” IEE Electronics Lett., vol. 44, no. 4, pp.299–301, Feb. 2008,
[44] S.-L. Jang, Y.-H. Chuang, C.-C. Chen, J.-F. Lee, and S.-H. Lee , “A CMOS dual-band voltage controlled oscillator,” in IEEE APCCAS, Dec. 2006, pp.514–517.
[45] S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, ” A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.816-818, Dec. 2009.
[46] X. Li, S. Shekhar, and D. J. Allstot, “Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609–2619, Dec. 2005.
[47] Y. Li, Y.-O. Jing, Y.-H. Shen, and Z.-S. Lai, “A stack-mode dual-band voltage-controlled oscillator multistandard wireless applications,” in ICSICT, Oct. 2006, pp. 1925-1927.
[48] H. Shin, Z. Xu, and M. F. Chang, “A 1.8-V 6/9-GHz switchable dual-band quadrature LC VCO in SiGe BiCMOS technology,” in IEEE RFIC Symp. Jun. 2002, pp. 71–74.
[49] N.H.W. Fong, J.-O. Plouchart, N. Zamdmer, D. Liu, L.F. Wagner, C. Plett, and N.G. Tarr, “Design of wide-band CMOS VCO for multiband wireless LAN applications,” IEEE J. Solid-State Circuits, vol. 38, no. 8, pp. 1333–1342, Aug. 2003.
[50] N. T. Tchamov, S. S. Broussev, I. S. Uzunov, and K. K. Rantala, “Dual-band LC VCO architecture with a fourth-order resonator,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 3, pp. 277–281, Mar. 2007.
[51] M. D. Wei, S. F. Chang, and Y. J. Yang, “A CMOS backgate-coupled QVCO based on back-to-back series varactor configuration for minimal AM-to-PM noise conversion,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 320–322, May. 2009.
[52] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in IEEE ISSCC Dig. Tech. Papers, Feb. 1996, pp. 392–393.
[53] S.-L. Jang, C.-C. Shih, C.-C. Liu, and M.-H. Juang, ” A 0.18 μm CMOS quadrature VCO using the quadruple push-push technique,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.343-345, June, 2010.
[54] S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi, “A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1148-1154, Jul. 2003.
[55] A. Kral, F. Behbahani and A. A. Abidi, “RF-CMOS oscillators with Switched Tuning,” in Proc. IEEE CICC, May 1998, pp. 555–558.
[56] S.-M. Yim and K. O. Kenneth, “Demonstration of a switched resonator concept in a dual-band monolithic CMOS LC-tuned VCO,” in Proc. IEEE CICC, May 2001, pp. 205–208.
[57] S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, ” A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.816-818, Dec. 2009.
[58] N. T. Tchamov, S. S. Broussev, I. S. Uzunov, and K. K. Rantala, “Dual-band LC VCO architecture with a fourth-order resonator,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 3, pp. 277–281, Mar. 2007.
[59] J.-H. Kim, H. J. Yoo, “A dual/wide band quadrature VCO with programmable LC tank for quad-band direct conversion WCDMA/WLAN receiver,” IEEE International Conference on Consumer Electronics (ICCE), Digest of Technical Papers. 301-302, 2005.
[60] S. –L. Jang, C.-W. Chang, H.-A. Yeh, M.-H. Juang, and Y.-J. Song, ” CMOS quadrature VCOs using the diode coupling technique,” Microwave and Optical Technology Lett., pp.551-553, March, 2011.
[61] H. Shin, Z. Xu, and M. F. Chang, “A 1.8-V 6/9-GHz switchable dual-band quadrature LC VCO in SiGe BiCMOS technology,” in IEEE RFIC Symp. Jun. 2002, pp. 71–74.
[62] S. Rong and H. C. Luong, “A 1V 4 GHz-and-10 GHz transformer-based dual-band quadrature VCO in 0.18 μm CMOS,” CICC2007, pp.817-820, Sept. 2007.
[63] C.-H. Kim, S.-H. Shin and H.-J. Yoo, “A dual band CMOS quadrature VCO for low power and low phase noise application,” IEEE Conf. Radio Frequency Integration Technology (RFIT), December 2007, pp 310-313.

無法下載圖示 全文公開日期 2016/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE