簡易檢索 / 詳目顯示

研究生: 康志強
Chih-Chiang Kang
論文名稱: 多頻帶壓控振盪器之遲滯迴路與多共振現象之探討
Study of Hysteresis Loop and Concurrent Resonance with Multi-Band Voltage-Controlled Oscillators
指導教授: 張勝良
Sheng-Lyang Jang
王煥宗
Huan-Chun Wang
口試委員: 徐敬文
Ching-Wen Hsue
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 111
中文關鍵詞: 壓控振盪器多頻帶振盪器遲滯迴路多共振振盪器CMOS變容器
外文關鍵詞: VCO, Multi-Band Oscillator, Hysteresis Loop, Concurrent Oscillator, CMOS, Varactor
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 首先,本論文探討一新型CMOS雙頻壓控振盪器,此振盪器由一雙頻共振腔與兩組nMOSFET電容性交叉耦合對組合而成,此次提出之電路採用台積電0.18微米製程來實現,面積為0.9×0.97 mm^2,電路在VDD=1.1V時,可以產生2.4GHz、6.9GHz之輸出,其功率消耗分別為高頻3.19 mW與低頻1.25mW,而此電路在某些偏壓條件下,能產生多共振之現象。
    其次,我們探討一個 六階共振腔之三頻帶壓控振盪器,其共振腔由左手共振腔與右手共振腔並聯而成,使用兩組變容器來切換頻帶,此電路採用台積電0.18微米矽鍺製程,面積為1.045 × 1.064 mm^2,此電路在提供電壓VDD=0.8V時,消耗功率為高頻3.824mW、中頻3.192mW、低頻3.488mW,而其輸出可調頻率範圍則分別為8.25-8.64GHz、6.87-6.90GHz、4.63-4.80GHz與4.24-4.50GHz,可觀察到遲滯現象對可調頻率範圍所造成之影響。
    最後,我們探討的電路是一個切換式雙頻壓控振盪器,該電路由兩組子振盪器、切換模態電感以及變容器所組成,藉由變容器容值的改變,可將電路切換到另一模態,產生兩組不同的輸出頻帶,此電路採用台積電0.18微米製程,面積為0.976×1.092mm^2,在供應電壓為VDD=0.76V之下,其功率消耗分別為高頻3.557mW與低頻5.206mW,輸出頻率則為高頻5.24GHz,低頻3.27GHz,此電路能觀察到可調頻率範圍之遲滯迴路,且在某些偏壓狀況下能產生多共振之現象。


    First, we study a new dual-band CMOS class-C voltage-controlled oscillator (VCO). The oscillator consists of a dual-resonance LC resonator in shunt with two pairs of capacitive cross-coupled nMOSFETs. The proposed oscillator has been implemented with the TSMC 0.18μm CMOS technology. The oscillator can generate differential signals at 2.4GHz and 6.9GHz and it also can generate concurrent frequency oscillation. With the supply voltage of VDD = 1.1 V, the VCO-core current and power consumption of the low/high-band oscillator are 2.90/1.14 mA and 3.19/1.25 mW, respectively. The die area of the concurrent oscillator is 0.9×0.97 mm^2.
    Secondly, we will briefly present a triple-band (TB) oscillator using two 4th order LC resonator to form a 6th order resonator. The TB oscillator uses a pair of cross-coupled nMOSFETs to emulate a negative differential resistance and two pairs of back-to-back varactors for band switching. The proposed oscillator has been implemented with CMOS devices in the TSMC 0.18μm SiGe 3P6M BiCMOS technology and the core oscillator current and power consumption at the high (middle, low)-band are 4.78(3.99, 4.36) mA and 3.824(3.192, 3.488) mW, respectively at the dc drain-source bias of 0.8V. The oscillator can generate differential signals in the frequency range of 8.25-8.64GHz, 6.87-6.90GHz, 4.63-4.80GHz and 4.24-4.50GHz, and the tuning range of oscillator shows the hysteresis effect. The die area of the triple-band oscillator is 1.045 × 1.064 mm^2.
    Finally, a mode-switched CMOS voltage-controlled oscillator (VCO) with two sub-frequency bands will be studied. The VCO consists of two cross-coupled VCOs coupled by a pair of mode-switched inductors. With the varactors as the mode switches, the VCO operates at the two different frequency bands. The proposed oscillator has been implemented with the TSMC 0.18μm CMOS technology. The oscillator can generate differential signals at 5.24GHz and 3.27GHz, and the core oscillator power consumption at the high/low-band is 4.68/6.85 mA and 3.557/5.206 mW, respectively at the dc drain-source bias of 0.76V, the hysteresis effect and concurrent oscillation are found. The die area of the dual-band VCO is 0.976×1.092mm^2.

    中文摘要…I Abstract…III 致謝…V Table of Contents…VI List of Figures…IX Chapter 1 Introduction…1 1.1 Motivation…1 1.2 Thesis Organization…3 Chapter 2 Overview of Voltage-Controlled Oscillator…4 2.1 Introduction…4 2.2 Basic Theory of Oscillators…4 2.2.1 Feedback Model…5 2.2.2 Negative-Resistance Model…7 2.3 Types of Oscillators…10 2.3.1 Ring Oscillator…10 2.3.2 LC-tank Oscillator…14 2.3.2.1 Colpitts and Hartley Oscillators…15 2.3.2.2 Negative -Gm Oscillators…17 2.4 Elements of Semiconductor Process…18 2.4.1 Resistor…18 2.4.2 Inductors…19 2.4.3 Capacitors…27 2.4.4 Varactors…29 2.4.4.1 P-N Reverse Biased Diode [16]…29 2.4.4.2 MOS Varactor [17]…31 2.4.4.3 The Accumulation-Mode (A-mode) MOS Varactor…34 2.4.4.4 The Inversion-Mode (I-mode) MOS Varactor…35 2.5 Design Concepts of VCO…36 2.6 Phase Noise…40 2.6.1 Definition of Phase Noise…40 2.6.2 Linear Time-Invariant (LTI) Phase Noise Model…42 2.6.3 Linear Time-Variant Phase Noise Model…45 2.6.4 Phase Noise in Communications…48 Chapter 3 Dual-Resonance Concurrent Oscillator…50 3.1 Introduction…50 3.2 Circuit Design…51 3.3 Measurement and Discussion…54 Chapter 4 Triple-Band Oscillator with Two Shunt Fourth-order LC Resonators…64 4.1 Introduction…64 4.2 Circuit Design…66 4.3 Measurement and Discussion…69 Chapter 5 Mode-switched Dual-Band CMOS VCO Using the Varactor Switch…77 5.1 Introduction…77 5.2 Circuit Design…78 5.3 Measurement and Discussion…80 5.3.1 Hysteresis Effect…80 5.3.2 Concurrent Oscillations…84 Chapter 6 Conclusion…89 References…91

    [1] I. R. Chamas and S. Raman, “A 5 GHz I/Q Phase-tunable CMOS LC Quadrature VCO (PT-QVCO) for Analog Phase Calibrated Receiver Architectures,” Silicon Monolithic Integrated Circuits in RF Systems, 2007 Topical Meeting on 10-12 Jan. 2007 Page(s):269 - 272
    [2] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 810-820, May 1992.
    [3] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998
    [4] B. Razavi, Design of Integrated Circuits for Optical Communications, Mc Graw Hill.
    [5] S. J. Lee, B. Kim, and K. Lee, “A Novel High-Speed Ring Oscillator for Multiphase Clock Generation Using Negative Skewed Delay Scheme”, IEEE Journal of Solid-State Circuits, vol. 32, No. 2, February 1997.
    [6] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Prentice Hall, 1997.
    [7] S. H. Lee and S. L. Jang, “Implementation of New High Frequency CMOS VCOs and Injection-Locked Frequency Dividers”, April 2007.
    [8] B. Razavi, Design of Analog CMOS Integrated Crcuits, MC Graw Hall, 2001.
    [9] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [10] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
    [11] Marc Tiebout, Low Power VCO Design in CMOS, Springer 2009.
    [12] J. Craninckx, and M. S. J. Steyaert, “A fully integrated CMOS DCS-1800 frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2054-2065, 1998.
    [13] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997.
    [14] C. P. Yue, C. Ryu, JackLau, T. H. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996.
    [15] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
    [16] A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators, Springer 1999.
    [17] B. De Muer, M. Borremans, M. Steyaert, and G. Li. Puma, “A 2GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization”, IEEE J. Solid-State Circuits, vol. 35, pp.1034-1038, 2000.
    [18] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10 Feb. 2005.
    [19] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
    [20] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [21] A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
    [22] B.Razavi, RF Microelectronics, Prentice Hall PTR 1998.
    [23] P. Andreani, X. Wang, L. Vandy, and A. Frad, “A study of phase noise in Colpitts and LC-tank CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1107-1118, May. 2005.
    [24] A. Mazzanti and P. Andreani, “Class-C harmonic CMOS VCOs, with a general result on phase noise,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2716–2729, Dec. 2008.
    [25] K. Okada, Y. Nomiyana, R. Murakami, and A. Matsuzawa, “A 0.114 mW dual-conduction class-C CMOS VCO with 0.2 V power supply,” in Proc. IEEE Symp. Circuits, Jun. 2009, pp. 228–229.
    [26] J. Chen, F. Jonsson, M. Carlsson, C. Hedenas, and L. R. Zheng, “A low power, start-up ensured and constant amplitude class-C VCO in 0.18 um CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp.427–429, Aug. 2011.
    [27] L. Fanori and P. Andreani, "Highly efficient class-C CMOS VCOs, including a comparison with class-B VCOs," IEEE J. Solid. State Circuits, vol.48, no.7, pp. 1730-1740, 2013.
    [28] S.-L. Jang, Y.-H. Chuang, C.-C. Chen, J.-F. Lee, and S.-H. Lee,“ A CMOS dual-band voltage controlled oscillator,” in Proc. IEEE APCCAS, Dec. 2006, pp. 514–517.
    [29] M. Tiebout, “A CMOS fully integrated 1 GHz and 2 GHz dual-band VCO with a voltage controlled inductor,” in Proc. Eur. Solid-State Circuits Conf. (ESSCIRC), Florence, Italy, Sep. 2002, pp. 799–802.
    [30] S.-M. Yim and K. K. O, “Switched resonators and their applications in a dual-band monolithic CMOS LC-tuned VCO,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 74–81, Jan. 2006.
    [31] S.-L. Jang, Y.-K. Wu, C.-C. Liu, and J.-F. Huang,” A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.816-818, Dec. 2009.
    [32] D. Baek, J. Kim, and S. Hong, “A dual-band (13/22-GHz) VCO based on resonant mode switching,” IEEE Microwave Wireless Compon Lett. vol. 13, No. 10, pp. 443–445, Oct 2003.
    [33] S.-L. Jang, J.-F. Huang, Y.-S. Lin, and C.-W. Chang, ” Switched inductor dual-band CMOS cross-coupled VCO,” Analog Integr Circ Sig Process., vol. 74, no. 3, pp. 527-532, March, 2013.
    [34] G. Li and E. Afshari, “A distributed dual-band LC oscillator based on mode switching,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 1, pp. 99–107, Jan. 2011.
    [35] C. F. Chang, and T. Itoh, “A dual-band millimeter-Wave CMOS oscillator with left-handed resonator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1401–1409, May 2010.
    [36] Z. Safarian and H. Hashemi, "Wideband multi-mode CMOS VCO design using coupled inductors," IEEE Trans Circuits and Systems I: Regular Papers, , vol.56, no.8, pp.1830-1843, Aug. 2009.
    [37] S.-L. Jang, Y.-T. Chen, C.-W. Chang, and M.-H. Juang, “Triple-band CMOS voltage-controlled oscillator,” Microw. Opt. Technol. Lett., vol. 55, 4, pp.737-740, April. 2013.
    [38] S. Jain and S.-L. Jang, "Triple-band transformer coupled LC oscillator with large output voltage swing," IEEE Microw. Wireless Compon. Lett., vol. 24, no. 7, pp. 475-477, July. 2014.
    [39] W. F. Andress and D. Ham, “Recent developments in standing-wave oscillator design: Review,” In IEEE Radio Frequency Integrated Circuits Symp., June 6–8, 2004, pp. 119–122.
    [40] G. V. Eleftheriades, “A Generalized Negative-refractive-Index Transmission-line (NRL-TL) Metamaterial for Dual-band and Quad-band Applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 6, pp.415–417, Jun. 2007.
    [41] T.-Y. Lu and W.-Z. Chen, “A 38/114 GHz switched-mode and synchronous lock standing wave oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 40-42, Dec. 2010.
    [42] H. M. Aumann, “Standing waves on a multimode ladder oscillator,” IEEE Trans. Circuits Syst. CAS-21, 461-462 May 1974.
    [43] S.-L. Jang, Wei-Hao Lee, and Ching-Wen Hsue, ” Fully-integrated standing wave oscillator using composite right/left-handed LC network,” Microw. Opt. Technol. Lett.., vol. 55, 5, pp.985-988, May. 2013.
    [44] A. Kral, A. Behbahani, and A. A. Abidi, “RF-CMOS oscillators with switched tuning,” in Proc. IEEE Custom Integr. Circuits Conf., 1998, pp. 555–558.
    [45] S. L. Jang, Y. H. Chuang, C. C. Chen, S. H. Lee, and J. F. Lee, “A CMOS dual-band voltage controlled oscillator”, IEEE Asia Pacific Conf. Circuits and Systems, 2006, pp. 514 – 517, Dec.2006.
    [46] S. M. Yim and K. K. O, “Demonstration of a switched resonator concept in a dual-band monolithic CMOS LC-tuned VCO,” in Proc. IEEE Custom Integrated Circuit Conference, pp. 205-208, May. 2001.

    無法下載圖示 全文公開日期 2021/08/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE