簡易檢索 / 詳目顯示

研究生: 張心悅
Hsin-Yueh Chang
論文名稱: 利用射頻磁控濺鍍法成長奈米碳棒之特性及其應用研究
Application and characteristics of carbon nanorod synthesized by radio frequency magnetron sputtering
指導教授: 李奎毅
Kuei-Yi Lee
口試委員: 何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
黃鶯聲
Ying-Sheng Huang
趙良君
Liang-Chiun Chao
王蒼容
Chun-Long Wang
許宏彬
Hung-Pin Hsu
程光蛟
Kwong-Kau Tiong
邱博文
Po-Wen Chiu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 99
中文關鍵詞: 奈米碳棒射頻磁控濺鍍法
外文關鍵詞: carbon nanorod, radio frequency magnetron sputtering
相關次數: 點閱:295下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗利用射頻磁控濺鍍法於低溫下成長具半導體特性之非晶質奈米碳棒,其形貌不同於一般使用濺鍍法成長之薄膜。本實驗從兩方面來對成長奈米碳棒做探討,首先,我們於不同溫度下成長奈米碳棒,並觀察其表面形貌及結構隨著成長溫度的改變之變化,實驗結果顯示,奈米碳棒具有粗糙樹枝狀的表面形貌且為實心的棒狀結構,其表面形貌並不隨著成長溫度的提高而有所改變,而其結晶性會隨著成長溫度的提高而變好,但其結構仍存在許多無序的鍵結。另一方面,我們將並藉由調控成長過程中通入氬氣及氮氣之比例,來控制氮摻雜含量,在實驗中,我們發現奈米碳棒調控通入氬氣及氮氣的比例能決定成長出碳膜亦或垂直奈米碳棒。當通入之氣體為氬氣及氮氣之混合氣時,由於解離之氬離子及氮離子的大小、質量及能量都不同,因此從碳靶材轟擊出大小、質量及能量不均之碳粒子吸附在基板上進而形成核島,後續吸附上之碳粒子接著向核島聚集以降低表面能然後繼而成長為奈米碳棒,且由於此奈米碳棒是由大小粒徑不一的碳粒子建構而成,因此形成粗糙的表面現象且擁有極高的比表面積。反之,當通入之氣體為純氬氣或氮氣時,則成長出碳膜。此外,我們將不同氮摻雜含量之奈米碳棒應用於燃料電池之陰極觸媒,在鹼性的環境中藉由旋轉環盤電極測量其氧氣還原活性,隨著氮摻雜含量上升,電流密度隨之增大,當氮含量為31.87 at.%其陰極氧氣還原電流密度可達-7.8 mA/cm2,啟動電位為-0.2 V (vs. Ag/AgCl),電子轉移
數為3.92,過氧化氫的產率為1.80%。而藉由X射線光電子能譜儀分析氮摻雜奈米碳棒得知pyridinic–N的含量隨著氮含量的增加而增加,證明了pyridinic–N與奈米碳棒的氧氣還原活性有直接的關係。因此本實驗除了證明本實驗成長之奈米碳棒可達到高氮摻雜含量之外,其對於氧氣還原具有高活性及高選擇性,為具有潛力的燃料電池非貴重金屬陰極觸媒。另外,本論文亦將奈米碳棒成長於石墨烯上,利用具有高比表面積的一維奈米碳棒與二維的石墨烯做結合,製造出三維的複合材料並應用於電雙層電容之電極。其優點為:(1)在接面結構上為碳-碳鍵結,可以有效降低接面阻抗,(2)增加電子在元件中的傳輸速度。在此實驗中,我們利用三極量測法量測電極的電容特性,並將電極分別置於30℃、40℃、50℃及60℃的鹼性環境中以測試其在高溫的環境仍具有良好的穩定性。實驗結果顯示,隨著量測環境的溫度升高其比電容值也隨之變大,進行1000圈充放電測試後其比電容值於30℃、40℃、50℃及60℃的環境中依序為405、520、670及830 F/g,證明了本實驗成長之奈米碳棒為擁有極佳的比電容值及具有良好穩定性之電極材料。


We present a method for growing carbon nano rods (CNR), an allotrope of 1-D carbon, using radio frequency magnetron sputtering at low temperature. We first investigate how the growth temperature (from room temperature to 380℃) and sputtering gas (Ar and N2) influence the CNR morphology and structure. The resulting CNRs were observed to be aligned vertically onto the substrate with uniform length exhibiting an amorphous structure with semiconducting properties. The CNR morphology did not change obviously but the crystallinity was enhanced with an increase in the growth temperature. Moreover, different CNR morphologies were observed when synthesized using various Ar/N2 sputtering gas ratios. Film-like CNRs were formed when pure N2 (or Ar) was used as the sputtering gas. Rod-like CNRs were formed when mixed Ar and N2 sputtering gas was applied. These inconsistent results indicate that sputtered carbon particles of different sizes and energy can be ascribed to the CNR formation. CNRs doped with different nitrogen content was used as the cathode catalysts for the proton exchange membrane fuel cell (PEMFC). The catalytic activity toward the oxygen reduction reaction (ORR) was studied. The nitrogen content was controlled directly by adjusting the Ar/N2 ratio during CNR growth. The nitrogen content and C–N bonding configuration of the samples were characterized using X-ray photoelectron spectroscopy, which demonstrated that the nitrogen content can reach up to 31.87% and the pyridinic-type nitrogen content increased with the increase in nitrogen content. The nitrogen-doped CNR with the largest amount of pyridinic-type nitrogen configuration exhibits superior ORR activity, which leads to a four-electron transfer in alkaline solution. The reduction current density can reach up to -7.8 mA/cm2, which opens the possibility for metal-free PEMFC catalysts applications. On the other hand, a hybrid 3-D structure, CNRs/graphene, was fabricated by combining highly conductive graphene (2-D) with vertically aligned CNRs (1-D). We used CNRs as the electrode and graphene as the current collector for electric double layer capacitor (EDLC) applications. The CNR and graphene combination has the following advantages: (1) The C–C bonding of the interface can effectively lower the impedance; (2) The structure can enhance the electron transmission speed in the device. The synthesized CNRs on graphene presented high number density, high direct aspect and large surface area, which can increase the reactive surface area between the electrode and electrolyte. The capacitor performance was characterized using cyclic voltammetry and galvanostatic charge-discharge testing in 1 M KOH electrolyte at 30℃, 40℃, 50℃, and 60℃. The CNR specific capacitance was observed to increase with increasing measurement temperature and could reach up to 830 F/g at 60℃. Even after extensive measurements, the CNR electrode maintained good adhesion to the graphene current collector, thereby suggesting electrode material stability.

Contents Abstract (in Chinese) ................................................... I Abstract (in English) ................................................. III Acknowledgement (in Chinese) ............................................ V Contents ............................................................... VI Figure captions ........................................................ IX Table captions ........................................................ XIV Chapter 1 Introduction .................................................. 1 1.1 Research background and motivation .................................. 1 1.2 Research topic and purpose .......................................... 2 1.3 Dissertation organization ........................................... 3 1.4 Carbon nanorod ...................................................... 5 1.4.1 Structure and properties .......................................... 5 1.4.2 Growth methods .................................................... 5 1.4.3 Applications of carbon nanorod ................................... 10 1.4.4 Research purpose ................................................. 12 1.5 Carbon nanorod as cathode catalysts for proton exchange membrane fuel cell.................................................................... 13 1.5.1 Introduction of proton exchange membrane fuel cell (PEMFC) ....... 13 1.5.2 Oxygen reduction reaction (ORR) .................................. 15 1.5.3 N-doped carbon catalysts for ORR ................................. 16 1.5.4 Research purpose ................................................. 17 1.6 Carbon nanorod as electrode material for electric double layer capacitor ........................................................................ 18 1.6.1 Introduction of electric double layer capacitor (EDLC) ........... 18 1.6.2 Carbon materials for EDLC electrode .............................. 19 1.6.3 Research purpose ................................................. 20 Chapter 2 Experimental methodology ..................................... 21 2.1 Experimental procedure ............................................. 21 2.2 Manufacturing procedure ............................................ 22 2.2.1 Synthesis of carbon nanorods by radio frequency magnetron sputtering.............................................................. 22 2.2.2 Preparation of the electrode for EDLC ............................ 23 2.2.2.1 Synthesis of graphene as current collector by thermal chemical vapor deposition ............................................................. 23 2.2.2.2 Packaging of the single cell for EDLC .......................... 26 2.2.3 Preparation of the catalysts for PEMFC ........................... 27 2.3 Analysis of characteristics......................................................... 28 2.3.1 Scanning electron microscopy ..................................... 28 2.3.2 Transmission electron microscopy ................................. 29 2.3.3 Raman spectroscopy ............................................... 30 2.3.4 X-ray photoelectron spectroscopy ................................. 30 2.3.5 Electrochemical analyzer ......................................... 31 2.3.5.1 EDLC measurement ............................................... 32 2.3.5.2 ORR measurement ................................................ 33 Chapter 3 Results and discussion ....................................... 34 3.1 Growth of carbon nanorod ........................................... 34 3.1.1 Morphology of carbon nanorod grown at different temperatures ..... 35 3.1.2 Raman analysis of carbon nanorod grown at different temperatures . 38 3.1.3 Morphology of carbon nanorod grown with different Ar/N2 ratios ... 40 3.1.4 Raman analysis of carbon nanorod grown with different Ar/N2 ratios.................................................................. 44 3.1.5 X-ray photoelectron spectroscopy analysis ........................ 45 3.1.6 Conductivity of carbon nanorod ................................... 48 3.1.7 Growth mechanism of carbon nanorod ............................... 49 3.1.8 Summary .......................................................... 50 3.2 CNR as cathode catalysts for oxygen reduction reaction in proton exchange membrane fuel cell ............................................ 51 3.2.1 Morphology of the catalysts slurry ............................... 51 3.2.2 Linear sweep voltammetry analysis ................................ 53 3.2.3 Electron transfer number and hydrogen peroxide yield ............. 56 3.2.4 Summery .......................................................... 58 3.3 Carbon nanorod as electrode material of electrode double layer capacitor ........................................................................ 59 3.3.1 Morphology and Raman analysis of graphene current collector ...... 60 3.3.2 Morphology and Raman analysis of carbon nanorod after annealing .. 61 3.3.3 Cyclic voltammetry analysis ...................................... 64 3.3.4 X-ray photoelectron spectroscopy analysis of the post-measured electrode .............................................................. 66 3.3.5 Galvanostatic charge-discharge analysis .......................... 69 3.3.6 Morphology of post-measured electrode ............................ 74 3.3.7 Summary .......................................................... 75 Chapter 4 Conclusions .................................................. 76 References ............................................................. 79 Publication lists ...................................................... 97

References
[1] S. Iijima, "Growth of carbon nanotubes," Mater. Sci. Eng. B, vol. 19, pp. 172-180, 1993.
[2] S. H. Tsai, C. W. Chao, C. L. Lee, X. W. Liu, I. N. Lin, and H. C. Shih, "Formation and field-emission of carbon nanofiber films on metallic nanowire arrays," Electrochem. Solid St., vol. 2, pp. 247-250, 1999.
[3] M. Zhang, J. H. Zhao, Z. Wu, B. Q. Wei, J. Liang, D. H. Wu, et al., "Large-area synthesis of carbon nanofiber films," J. Mater. Sci. Lett., vol. 17, pp. 2109-2111, 1998.
[4] O. A. Shenderova, B. L. Lawson, D. Areshkin, and D. W. Brenner, "Predicted structure and electronic properties of individual carbon nanocones and nanostructures assembled from nanocones," Nanotechnology, vol. 12, pp. 191-197, 2001.
[5] C. K. Tan, K. P. Loh, J. T. L. Thong, C. H. Sow, and H. Zhang, "Plasma synthesis of well-aligned carbon nanocones," Diamond Relat. Mater., vol. 14, pp. 902-906, 2005.
[6] Ş. Erkoç, "From carbon nanotubes to carbon nanorods," Int. J. Mod. Phys. C, vol. 11, pp. 1247-1255, 2000.
[7] H. Dai, E. W. Wong, Y. Z. Lu, S. Fan, and C. M. Lieber, "Synthesis and characterization of carbide nanorods," Nature, vol. 375, pp. 769-772, 1995.
[8] S. Chen, X. Huang, H. Liu, B. Sun, W. Yeoh, K. Li, et al., "3D hyperbranched hollow carbon nanorod architectures for high-performance lithium-sulfur batteries," Adv. Energy Mater., vol. 4, p. 1301761, 2014.
[9] S. Wang, Y. Xing, C. Xiao, X. Wei, H. Xu, and S. Zhang, "Hollow carbon-shell/carbon-nanorod arrays for high performance Li-ion batteries and
80
supercapacitors," RSC Adv., vol. 5, pp. 7959-7963, 2015.
[10] H. Y. Chang, Y. J. Huang, H. C. Chang, W. J. Su, Y. T. Shih, J. L. Chen, et al., "Electrochemical characteristics of amorphous carbon nanorod synthesized by radio frequency magnetron sputtering," Appl. Surf. Sci., vol. 326, pp. 243-250, 2015.
[11] D. Yuan, X. Yuan, S. Zhou, W. Zou, and T. Zhou, "N-Doped carbon nanorods as ultrasensitive electrochemical sensors for the determination of dopamine," RSC Adv., vol. 2, pp. 8157-8163, 2012.
[12] P. M. Hallam, B. L. Riehl, B. D. Riehl, and C. E. Banks, "Solid carbon nanorod whiskers: Application to the electrochemical sensing of biologically relevant molecules," RSC Adv., vol. 1, pp. 93-99, 2011.
[13] L. Ge, C. Han, L. Ni, J. Zhang, Y. Tao, Q. Yu, et al., "Synthesis and electrochemical properties of Li3V2(PO4)3/C with one-dimensional (1D) nanorod structure for cathode materials of lithium-ion batteries," Solid State Sci., vol. 14, pp. 864-869, 2012.
[14] M. Halim, J. S. Kim, J. G. Choi, and J. K. Lee, "Electrochemical characterization of carbon coated bundle-type silicon nanorod for anode material in lithium ion secondary batteries," Appl. Surf. Sci., vol. 334, pp. 115-122, 2015.
[15] R. Ritikos, S. A. Rahman, S. M. A. Gani, M. R. Muhamad, and Y. K. Yap, "Catalyst-free formation of vertically-aligned carbon nanorods as induced by nitrogen incorporation," Carbon, vol. 49, pp. 1842-1848, 2011.
[16] C. X. Jiang, J. P. Tu, S. Y. Guo, M. F. Fu, and X. B. Zhao, "Preparation and friction properties of aligned membrane of amorphous carbon nanorods on AAO template," Zhejiang Daxue Xuebao, J. Zhejiang Univ., vol. 39, pp. 738-741, 2005.
81
[17] M. K. Singh, E. Titus, M. G. Willinger, J. C. Madaleno, and J. Grácioa, "Microstructure and electron field emission study of diamond nanorod decorated a-SiO2 nanowires by microwave Ar-CH4/H2 plasma chemical vapor deposition with addition of N2," Diamond Relat. Mater., vol. 18, pp. 865-869, 2009.
[18] Y. Yan, K. Zheng, J. Wang, M. Zheng, B. Wang, and X. Quan, "Catalytic growth mechanism and catalyst effects on electron field emission of nitrogenated carbon nanorods formed by plasma-enhanced hot filament chemical vapor deposition," Vacuum, vol. 101, pp. 283-290, 2014.
[19] H. X. Zhang and P. X. Feng, "Synthesis of the vertically aligned carbon hexagonal nanoprism arrays and their application for field emission," Appl. Surf. Sci., vol. 255, pp. 5939-5942, 2009.
[20] Z. Geretovszky, Z. Kántor, I. Bertóti, and T. Szörényi, "Pulsed laser deposition of carbon nitride films by a sub-ps laser," Appl. Phys. Mater. Sci. Process., vol. 70, pp. 9-11, 2000.
[21] A. Kumar and R. Alexandrescu, "Laser assisted deposition of carbon nitride coatings," Mater Res. Soc. Symp. Proc., vol. 555, pp. 387-393, 1999.
[22] P. T. Murray and D. T. Peeler, "Pulsed laser deposition of carbon films: Dependence of film properties on laser wavelength," J. Electron. Mater., vol. 23, pp. 855-859, 1994.
[23] M. Mannsberger, A. Kukovecz, V. Georgakilas, J. Rechthaler, F. Hasi, G. Allmaier, et al., "Scanning probe microscopy and spectroscopy of carbon nanorods grown by self assembly," Carbon, vol. 42, pp. 953-960, 2004.
[24] L. Yang, P. W. May, L. Yin, T. B. Scott, J. A. Smith, and K. N. Rosser, "Growth and characterization of self-assembled carbon nitride leaf-like nanostructures," Nanotechnology, vol. 17, pp. 5798-5804, 2006.
82
[25] M. C. Hsieh, S. H. Wu, D. K. Jair, Y. K. Fang, and Y. C. Chen, "Studies of high performances 3D nanorods n-i-p diode oxygen sensor," in IEEE Nanotechnology Materials and Devices Conference, IEEE NMDC 2013, 2013, pp. 59-62.
[26] A. V. Rogov, S. S. Fanchenko, and A. E. Varfolomeev, "Ion-assisted nanorod growth by dc magnetron sputtering," Phys. Status Solidi A., vol. 202, pp. 2737-2741, 2005.
[27] S. H. Jo, Y. Tu, Z. P. Huang, D. L. Carnahan, D. Z. Wang, and Z. F. Ren, "Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties," Appl. Phys. Lett., vol. 82, pp. 3520-3522, 2003.
[28] C. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, Y. H. Lee, et al., "Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition," Chem. Phys. Lett., vol. 312, pp. 461-468, 1999.
[29] M. Penza, R. Rossi, M. Alvisi, and E. Serra, "Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications," Nanotechnology, vol. 21, p. 105501, 2010.
[30] L. Li, Z. Yang, H. Gao, H. Zhang, J. Ren, X. Sun, et al., "Vertically aligned and penetrated carbon nanotube/polymer composite film and promising electronic applications," Adv. Mater., vol. 23, pp. 3730-3735, 2011.
[31] B. Hsia, J. Marschewski, S. Wang, J. B. In, C. Carraro, D. Poulikakos, et al., "Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes," Nanotechnology, vol. 25, p. 055401, 2014.
[32] W. Lu, L. Qu, K. Henry, and L. Dai, "High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes," J. Power Sources, vol. 189, pp. 1270-1277, 2009.
[33] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.
83
Dubonos, et al., "Electric field in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004.
[34] P. Avouris, "Graphene: Electronic and photonic properties and devices," Nano Lett., vol. 10, pp. 4285-4294, 2010.
[35] H. X. Zhang and P. X. Feng, "Properties of one-dimensional tilted carbon nanorod arrays synthesized by the catalyst-assisted oblique angle deposition technique," J. Phys. D: Appl. Phys., vol. 42, p. 025406, 2009.
[36] M. Liu, V. I. Artyukhov, H. Lee, F. Xu, and B. I. Yakobson, "Carbyne from first principles: Chain of C atoms, a nanorod or a nanorope," ACS Nano, vol. 7, pp. 10075-10082, 2013.
[37] A. Calka, D. Wexler, and A. Y. Mosbah, "Nanotube and nanorod synthesis under high frequency electric discharge assisted mechanical milling," Solid State Phenom., vol. 114, pp. 277-284, 2006.
[38] J. B. Chen, C. W. Wang, J. Wang, Y. Li, R. S. Guo, B. H. Ma, et al., "Synthesis and field emission of diamond-like carbon nanorods on TiO2/Ti nanotube arrays," Appl. Surf. Sci., vol. 256, pp. 39-42, 2009.
[39] H. Orikasa, T. Akahane, M. Okada, Y. Tong, J. I. Ozaki, and T. Kyotani, "Electrochemical behavior of carbon nanorod arrays having different graphene orientations and crystallinity," J. Mater. Chem., vol. 19, pp. 4615-4621, 2009.
[40] Z. Lou, M. He, D. Zhao, Z. Li, and T. Shang, "Synthesis of carbon nanorods by reduction of carbon bisulfide," J. Alloy. Compd., vol. 507, pp. 38-41, 9/24/ 2010.
[41] L. Yang, P. W. May, L. Yin, J. A. Smith, and K. N. Rosser, "Ultra fine carbon nitride nanocrystals synthesized by laser ablation in liquid solution," J. Nanopart. Res., vol. 9, pp. 1181-1185, 2007.
[42] Y. Lifshitz, S. R. Kasi, J. W. Rabalais, and W. Eckstein, "Subplantation model
84
for film growth from hyperthermal species," Phys. Rev. B, vol. 41, pp. 10468-10480, 1990.
[43] R. Kelly and A. Miotello, "Comments on explosive mechanisms of laser sputtering," Appl. Surf. Sci., vol. 96-98, pp. 205-215, 1996.
[44] A. P. Jones, A. G. G. M. Tielens, and D. J. Hollenbach, "Grain shattering in shocks: The interstellar grain size distribution," Astrophys. J., vol. 469, pp. 740-764, 1996.
[45] T. Bein, "Synthesis and applications of molecular sieve layers and membranes," Chem. Mater., vol. 8, pp. 1636-1653, 1996.
[46] R. Krishnan, T. M. Lu, and N. Koratkar, "Functionally strain-graded nanoscoops for high power Li-ion battery anodes," Nano Lett., vol. 11, pp. 377-384, 2011.
[47] R. B. Mathur, S. Seth, C. Lal, R. Rao, B. P. Singh, T. L. Dhami, et al., "Co-synthesis, purification and characterization of single- and multi-walled carbon nanotubes using the electric arc method," Carbon, vol. 45, pp. 132-140, 2007.
[48] V. Ivanov, J. B. Nagy, P. Lambin, A. Lucas, X. B. Zhang, X. F. Zhang, et al., "The study of carbon nanotubules produced by catalytic method," Chem. Phys. Lett., vol. 223, pp. 329-335, 1994.
[49] T. J. Park, S. Banerjee, T. Hemraj-Benny, and S. S. Wong, "Purification strategies and purity visualization techniques for single-walled carbon nanotubes," J. Am. Chem. Soc., vol. 16, pp. 141-154, 2006.
[50] M. E. Itkis, D. E. Perea, R. Jung, S. Niyogi, and R. C. Haddon, "Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes," J. Am. Chem. Soc., vol. 127, pp. 3439-3448, 2005.
[51] C. P. Jones, K. Jurkschat, A. Crossley, and C. E. Banks, "Multi-walled carbon
85
nanotube modified basal plane pyrolytic graphite electrodes: Exploring heterogeneity, electro-catalysis and highlighting batch to batch variation," J. Iran. Chem. Soc., vol. 5, pp. 279-285, 2008.
[52] D. Varshney, V. I. Makarov, P. Saxena, A. González-Berríos, J. F. Scott, B. R. Weiner, et al., "Fabrication and field emission study of novel rod-shaped diamond-like carbon nanostructures," Nanotechnology, vol. 21, 2010.
[53] B. B. Wang, K. Ostrikov, C. S. Gong, E. Q. Xie, and R. Z. Wang, "Structure- and composition-dependent electron field emission from nitrogenated carbon nanotips," J. Appl. Phys., vol. 112, 2012.
[54] O. Z. Sharaf and M. F. Orhan, "An overview of fuel cell technology: Fundamentals and applications," Renew. Sust. Energ. Rev., vol. 32, pp. 810-853, 2014.
[55] G. Merle, M. Wessling, and K. Nijmeijer, "Anion exchange membranes for alkaline fuel cells: A review," J. Membrane Sci., vol. 377, pp. 1-35, 2011.
[56] N. Hojo, M. Okuda, and M. Nakamura, "Phosphoric acid fuel cells in Japan," J. Power Sources, vol. 61, pp. 73-77, 1996.
[57] D. Lee and J. Bae, "Evaluation of the net water transport through electrolytes in Proton Exchange Membrane Fuel Cell," J. Power Sources, vol. 191, pp. 390-399, 2009.
[58] C. E. Baumgartner, V. J. DeCarlo, P. G. Glugla, and J. J. Grimaldi, "Molten carbonate fuel cell electrolyte structure fabrication using electrophoretic deposition," J. Electrochem. Soc., vol. 132, pp. 57-63, 1985.
[59] M. L. Faro, D. L. Rosa, V. Antonucci, and A. S. Aricó, "Intermediate temperature solid oxide fuel cell electrolytes," J. Indian Inst. Sci., vol. 89, pp. 363-380, 2009.
[60] Y. Oono, T. Fukuda, A. Sounai, and M. Hori, "Influence of operating
86
temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells," J. Power Sources, vol. 195, pp. 1007-1014, 2010.
[61] K. Inman, X. Wang, and B. Sangeorzan, "Design of an optical thermal sensor for proton exchange membrane fuel cell temperature measurement using phosphor thermometry," J. Power Sources, vol. 195, pp. 4753-4757, 2010.
[62] S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K. T. Lau, and J. H. Lee, "Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges," Prog. Polym. Sci., vol. 36, pp. 813-843, 2011.
[63] J. St-Pierre, "PEMFC contaminant tolerance limit - Foreign cations in ionomers," Int. J. Hydrogen Energ., vol. 36, pp. 5527-5535, 2011.
[64] W. Schmittinger and A. Vahidi, "A review of the main parameters influencing long-term performance and durability of PEM fuel cells," J. Power Sources, vol. 180, pp. 1-14, 2008.
[65] Z. X. Liu, Z. P. Li, H. Y. Qin, and B. H. Liu, "Oxygen reduction reaction via the 4-electron transfer pathway on transition metal hydroxides," J. Power Sources, vol. 196, pp. 4972-4979, 2011.
[66] C. H. Choi, H. C. Kwon, S. Yook, H. Shin, H. Kim, and M. Choi, "Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated pt surface," J. Phys. Chem. C, vol. 118, pp. 30063-30070, 2014.
[67] E. Yeager, "Dioxygen electrocatalysis: mechanisms in relation to catalyst structure," J. Mol. Catal., vol. 38, pp. 5-25, 1986.
[68] A. J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and applications. New York: Wiley, 1980.
[69] P. Costamagna and S. Srinivasan, "Quantum jumps in the PEMFC science and
87
technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects," J. Power Sources, vol. 102, pp. 253-269, 2001.
[70] P. Costamagna and S. Srinivasan, "Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects," J. Power Sources, vol. 102, pp. 242-252, 2001.
[71] C. Domínguez, F. J. Pérez-Alonso, J. L. Gómez De La Fuente, S. A. Al-Thabaiti, S. N. Basahel, A. O. Alyoubi, et al., "Influence of the electrolyte for the oxygen reduction reaction with Fe/N/C and Fe/N/CNT electrocatalysts," J. Power Sources, vol. 271, pp. 87-96, 2014.
[72] L. Lin, Q. Zhu, and A. W. Xu, "Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions," J. Am. Chem. Soc., vol. 136, pp. 11027-11033, 2014.
[73] H. Shi, Y. Shen, F. He, Y. Li, A. Liu, S. Liu, et al., "Recent advances of doped carbon as non-precious catalysts for oxygen reduction reaction," J. Mater. Chem. A, vol. 2, pp. 15704-15716, 2014.
[74] J. Yu, Y. Lu, C. Yuan, J. Zhao, M. Wang, and R. Liu, "Carbon supported polyindole-5-carboxylic acid covalently bonded with pyridine-2,4-diamine copper complex as a non-precious oxygen reduction catalyst," Electrochim. Acta, vol. 143, pp. 1-9, 2014.
[75] X. Bo, M. Li, C. Han, Y. Zhang, A. Nsabimana, and L. Guo, "Noble metal-free electrocatalysts for the oxygen reduction reaction based on iron and nitrogen-doped porous graphene," J. Mater. Chem. A, vol. 3, pp. 1058-1067, 2015.
[76] S. Gao, H. Fan, and S. Zhang, "Nitrogen-enriched carbon from bamboo fungus with superior oxygen reduction reaction activity," J. Mater. Chem. A, vol. 2, pp.
88
18263-18270, 2014.
[77] W. J. Jiang, J. S. Hu, X. Zhang, Y. Jiang, B. B. Yu, Z. D. Wei, et al., "In situ nitrogen-doped nanoporous carbon nanocables as an efficient metal-free catalyst for oxygen reduction reaction," J. Mater. Chem. A, vol. 2, pp. 10154-10160, 2014.
[78] F. Pan, Z. Cao, Q. Zhao, H. Liang, and J. Zhang, "Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction," J. Power Sources, vol. 272, pp. 8-15, 2014.
[79] Y. P. Zhang, Y. Liu, X. B. Luo, M. Isobe, G. L. Yuan, Y. Q. Liu, et al., "Development of the scintillator-based probe for fast-ion losses in the HL-2A tokamak," Rev. Sci. Instrum., vol. 85, 2014.
[80] M. Terrones, P. M. Ajayan, F. Banhart, X. Blase, D. L. Carroll, J. C. Charlier, et al., "N-doping and coalescence of carbon nanotubes: Synthesis and electronic properties," Appl. Phys. Mater. Sci. Process., vol. 74, pp. 355-361, 2002.
[81] Y. Okamoto, "First-principles molecular dynamics simulation of O2 reduction on nitrogen-doped carbon," Appl. Surf. Sci., vol. 256, pp. 335-341, 2009.
[82] V. V. Strelko, N. T. Kartel, I. N. Dukhno, V. S. Kuts, R. B. Clarkson, and B. M. Odintsov, "Mechanism of reductive oxygen adsorption on active carbons with various surface chemistry," Surf. Sci., vol. 548, pp. 281-290, 2004.
[83] L. Chen, X. Cui, Y. Wang, M. Wang, F. Cui, C. Wei, et al., "One-step hydrothermal synthesis of nitrogen-doped carbon nanotubes as an efficient electrocatalyst for oxygen reduction reactions," Chem. Asian J., vol. 9, pp. 2915-2920, 2014.
[84] F. Gao, G. L. Zhao, and S. Yang, "Catalytic reactions on the open-edge sites of nitrogen-doped carbon nanotubes as cathode catalyst for hydrogen fuel cells,"
89
ACS Catal., vol. 4, pp. 1267-1273, 2014.
[85] G. L. Tian, M. Q. Zhao, D. Yu, X. Y. Kong, J. Q. Huang, Q. Zhang, et al., "Nitrogen-doped graphene/carbon nanotube hybrids: In situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction," Small, vol. 10, pp. 2251-2259, 2014.
[86] Y. Zhang, W. J. Jiang, X. Zhang, L. Guo, J. S. Hu, Z. Wei, et al., "Engineering self-assembled N-doped graphene-carbon nanotube composites towards efficient oxygen reduction electrocatalysts," Phys. Chem. Chem. Phys., vol. 16, pp. 13605-13609, 2014.
[87] D. Liu, X. Zhang, Z. Sun, and T. You, "Free-standing nitrogen-doped carbon nanofiber films as highly efficient electrocatalysts for oxygen reduction," Nanoscale, vol. 5, pp. 9528-9531, 2013.
[88] S. Maldonado and K. J. Stevenson, "Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes," J. Phys. Chem. B, vol. 109, pp. 4707-4716, 2005.
[89] M. Borghei, I. Azcune, P. M. Carrasco, J. Sainio, E. Kauppinen, and V. Ruiz, "Nitrogen-doped graphene with enhanced oxygen reduction activity produced by pyrolysis of graphene functionalized with imidazole derivatives," Int. J. Hydrogen Energ., vol. 39, pp. 12749-12756, 2014.
[90] S. M. Unni, R. Illathvalappil, P. K. Gangadharan, S. N. Bhange, and S. Kurungot, "Layer-separated distribution of nitrogen doped graphene by wrapping on carbon nitride tetrapods for enhanced oxygen reduction reactions in acidic medium," Chem. Commun., vol. 50, pp. 13769-13772, 2014.
[91] T. Xing, Y. Zheng, L. H. Li, B. C. C. Cowie, D. Gunzelmann, S. Z. Qiao, et al., "Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer graphene," ACS Nano, vol. 8, pp. 6856-6862, 2014.
90
[92] Z. H. Sheng, L. Shao, J. J. Chen, W. J. Bao, F. B. Wang, and X. H. Xia, "Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis," ACS Nano, vol. 5, pp. 4350-4358, 2011.
[93] H. Niwa, K. Horiba, Y. Harada, M. Oshima, T. Ikeda, K. Terakura, et al., "X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells," J. Power Sources, vol. 187, pp. 93-97, 2009.
[94] P. H. Matter and U. S. Ozkan, "Non-metal catalysts for dioxygen reduction in an acidic electrolyte," Catal. Lett., vol. 109, pp. 115-123, 2006.
[95] J. Chen, X. Wang, X. Cui, G. Yang, and W. Zheng, "Amorphous carbon enriched with pyridinic nitrogen as an efficient metal-free electrocatalyst for oxygen reduction reaction," Chem. Commun., vol. 50, pp. 557-559, 2014.
[96] B. Zhang, Z. Wen, S. Ci, S. Mao, J. Chen, and Z. He, "Synthesizing nitrogen-doped activated carbon and probing its active sites for oxygen reduction reaction in microbial fuel cells," ACS Appl. Mater. Inter., vol. 6, pp. 7464-7470, 2014.
[97] K. Lee, L. Zhang, H. Lui, R. Hui, Z. Shi, and J. Zhang, "Oxygen reduction reaction (ORR) catalyzed by carbon-supported cobalt polypyrrole (Co-PPy/C) electrocatalysts," Electrochim. Acta, vol. 54, pp. 4704-4711, 2009.
[98] J. i. Ozaki, N. Kimura, T. Anahara, and A. Oya, "Preparation and oxygen reduction activity of BN-doped carbons," Carbon, vol. 45, pp. 1847-1853, 2007.
[99] T. Ikeda, M. Boero, S. F. Huang, K. Terakura, M. Oshima, and J. I. Ozaki, "Carbon alloy catalysts: Active sites for oxygen reduction reaction," J. Phys. Chem. C, vol. 112, pp. 14706-14709, 2008.
91
[100] R. Wu, S. Chen, Y. Zhang, Y. Wang, W. Ding, L. Li, et al., "Template-free synthesis of hollow nitrogen-doped carbon as efficient electrocatalysts for oxygen reduction reaction," J. Power Sources, vol. 274, pp. 645-650, 2014.
[101] Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, et al., "An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes," Nat. Nanotechnol., vol. 7, pp. 394-400, 2012.
[102] Y. H. Lai, H. B. Lian, and K. Y. Lee, "Field emission of vertically aligned carbon nanotubes with various content of nitrogen," Diamond Relat. Mater., vol. 18, pp. 544-547, 2009.
[103] P. Subramanian, A. Cohen, E. Teblum, G. D. Nessim, E. Bormasheko, and A. Schechter, "Electrocatalytic activity of nitrogen plasma treated vertically aligned carbon nanotube carpets towards oxygen reduction reaction," Electrochem. Commun., vol. 49, pp. 42-46, 2014.
[104] D. Liu, X. Zhang, and T. You, "Urea-treated carbon nanofibers as efficient catalytic materials for oxygen reduction reaction," J. Power Sources, vol. 273, pp. 810-815, 2014.
[105] Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes, and S. Dai, "Carbon materials for chemical capacitive energy storage," Adv. Mater., vol. 23, pp. 4828-4850, 2011.
[106] M. Jayalakshmi and K. Balasubramanian, "Simple capacitors to supercapacitors - An overview," Int. J. Electrochem. Sc., vol. 3, pp. 1196-1217, 2008.
[107] C. Lei and C. Lekakou, "Activated carbon-carbon nanotube nanocomposite coatings for supercapacitor applications," Surf. Coat. Technol., vol. 232, pp. 326-330, 2013.
[108] C. Lei, N. Amini, F. Markoulidis, P. Wilson, S. Tennison, and C. Lekakou,
92
"Activated carbon from phenolic resin with controlled mesoporosity for an electric double-layer capacitor (EDLC)," J. Mater. Chem. A, vol. 1, pp. 6037-6042, 2013.
[109] H. R. Yu, S. Cho, M. J. Jung, and Y. S. Lee, "Electrochemical and structural characteristics of activated carbon-based electrodes modified via phosphoric acid," Microporous Mesoporous Mater., vol. 172, pp. 131-135, 2013.
[110] A. Krause, P. Kossyrev, M. Oljaca, S. Passerini, M. Winter, and A. Balducci, "Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black," J. Power Sources, vol. 196, pp. 8836-8842, 2011.
[111] S. R. S. Prabaharan, R. Vimala, and Z. Zainal, "Nanostructured mesoporous carbon as electrodes for supercapacitors," J. Power Sources, vol. 161, pp. 730-736, 2006.
[112] Y. Yamada, T. Tanaka, K. MacHida, S. Suematsu, K. Tamamitsu, H. Kataura, et al., "Electrochemical behavior of metallic and semiconducting single-wall carbon nanotubes for electric double-layer capacitor," Carbon, vol. 50, pp. 1422-1424, 2012.
[113] Y. Show, "Electric double-layer capacitor fabricated with addition of carbon nanotube to polarizable electrode," J. Nanomater., vol. 2012, p. 929343, 2012.
[114] E. Jeong, M. J. Jung, and Y. S. Lee, "Role of fluorination in improvement of the electrochemical properties of activated carbon nanofiber electrodes," J. Fluorine Chem., vol. 150, pp. 98-103, 2013.
[115] S. Mitani, M. Sathish, D. Rangappa, A. Unemoto, T. Tomai, and I. Honma, "Nanographene derived from carbon nanofiber and its application to electric double-layer capacitors," Electrochim. Acta, vol. 68, pp. 146-152, 2012.
[116] S. T. Senthilkumar, B. Senthilkumar, S. Balaji, C. Sanjeeviraja, and R. Kalai Selvan, "Preparation of activated carbon from sorghum pith and its structural
93
and electrochemical properties," Mater. Res. Bull., vol. 46, pp. 413-419, 2011.
[117] T. Sato, Y. Suda, H. Uruno, H. Takikawa, H. Tanoue, H. Ue, et al., "Electrochemical properties of arc-black and carbon nano-balloon as electrochemical capacitor electrodes," J. Phys. Conf. Ser., vol. 352, p. 012032, 2012.
[118] W. Wang, S. Guo, M. Penchev, I. Ruiz, K. N. Bozhilov, D. Yan, et al., "Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors," Nano Energy, vol. 2, pp. 294-303, 2013.
[119] J. Lin, J. Zhong, D. Bao, J. Reiber-Kyle, W. Wang, V. Vullev, et al., "Supercapacitors based on pillared graphene nanostructures," J. Nanosci. Nanotechno., vol. 12, pp. 1770-1775, 2012.
[120] M. L. Chen, C. Y. Park, Z. D. Meng, L. Zhu, J. G. Choi, T. Ghosh, et al., "Characterization of graphene nanosheets as electrode material and their performances for electric double-layer capacitors," Fuller. Nanotub. Car. N., vol. 21, pp. 525-536, 2013.
[121] H. S. Min, S. Kim, D. S. Cheong, W. K. Choi, Y. J. Oh, and J. K. Lee, "Improvement of electrochemical characteristics by changing morphologies of carbon electrode," Korean J. Mater. Res., vol. 19, pp. 544-549, 2009.
[122] H. Chen, J. Di, Y. Jin, M. Chen, J. Tian, and Q. Li, "Active carbon wrapped carbon nanotube buckypaper for the electrode of electrochemical supercapacitors," J. Power Sources, vol. 237, pp. 325-331, 2013.
[123] Y. S. Lin, K. Y. Lee, K. Y. Chen, and Y. S. Huang, "Superior capacitive characteristics of RuO2 nanorods grown on carbon nanotubes," Appl. Surf. Sci., vol. 256, pp. 1042-1045, 2009.
[124] Y. M. Chen, J. H. Cai, Y. S. Huang, K. Y. Lee, and D. S. Tsai, "Preparation and characterization of iridium dioxide-carbon nanotube nanocomposites for
94
supercapacitors," Nanotechnology, vol. 22, p. 115706, 2011.
[125] M. C. K. Sellers, B. M. Castle, and C. P. Marsh, "Three-dimensional manganese dioxide-functionalized carbon nanotube electrodes for electrochemical supercapacitors," J. Solid State Electrochem., vol. 17, pp. 175-182, 2013.
[126] P. Lin, Q. She, B. Hong, X. Liu, Y. Shi, Z. Shi, et al., "The nickel oxide/CNT composites with high capacitance for supercapacitor," J. Electrochem. Soc., vol. 157, pp. A818-A823, 2010.
[127] J. Robertson, "Diamond-like amorphous carbon," Mat. Sci. Eng. R, vol. 37, pp. 129-282, 2002.
[128] P. K. Chu and L. Li, "Characterization of amorphous and nanocrystalline carbon films," Mater. Chem. Phys., vol. 96, pp. 253-277, 2006.
[129] A. C. Ferrari and J. Robertson, "Resonant raman spectroscopy of disordered, amorphous, and diamondlike carbon," Phys. Rev. B, Condens. Matter, vol. 64, pp. 754141-7541413, 2001.
[130] A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Phys. Rev. B, Condens. Matter, vol. 61, pp. 14095-14107, 2000.
[131] A. Jorio, M. A. Pimenta, A. G. Souza Filho, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, "Characterizing carbon nanotube samples with resonance Raman scattering," New J. Phys., vol. 5, pp. 139.1-139.17, 2003.
[132] J. Chen, X. Wang, X. Cui, G. Yang, and W. Zheng, "One-step synthesis of N-doped amorphous carbon at relatively low temperature as excellent metal-free electrocatalyst for oxygen reduction," Catal. Commun., vol. 46, pp. 161-164, 2014.
[133] Y. Zhu, Y. Lin, B. Zhang, J. Rong, B. Zong, and D. S. Su, "Nitrogen-doped
95
annealed nanodiamonds with varied sp2/sp3 ratio as metal-free electrocatalyst for the oxygen reduction reaction," ChemCatChem, pp. n/a-n/a, 2015. (in press)
[134] I. Kruusenberg, S. Ratso, M. Vikkisk, P. Kanninen, T. Kallio, A. M. Kannan, et al., "Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell," J. Power Sources, vol. 281, pp. 94-102, 2015.
[135] D. Liu, W. Lei, D. Portehault, S. Qin, and Y. Chen, "High N-content holey few-layered graphene electrocatalysts: Scalable solvent-less production," J. Mater. Chem. A, vol. 3, pp. 1682-1687, 2015.
[136] M. Khan, A. B. Yousaf, M. Chen, C. Wei, X. Wu, N. Huang, et al., "Mixed-phase Pd-Pt bimetallic alloy on graphene oxide with high activity for electrocatalytic applications," J. Power Sources, vol. 282, pp. 520-528, 2015.
[137] Z. Liu, J. Qu, X. Fu, Q. Wang, G. Zhong, and F. Peng, "Low Pt content catalyst supported on nitrogen and phosphorus-codoped carbon nanotubes for electrocatalytic O2 reaction in acidic medium," Mater. Lett., vol. 142, pp. 115-118, 2015.
[138] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, "Perspectives on carbon nanotubes and graphene Raman spectroscopy," Nano Lett., vol. 10, pp. 751-758, 2010.
[139] M. Ramm, M. Ata, K. W. Brzezinka, T. Gross, and W. Unger, "Studies of amorphous carbon using X-ray photoelectron spectroscopy, near-edge X-ray-absorption fine structure and Raman spectroscopy," Thin Solid Films, vol. 354, pp. 106-110, 1999.
[140] Y. Tian, J. W. Yan, R. Xue, and B. L. Yi, "Influence of electrolyte concentration and temperature on the capacitance of activated carbon," Wuli Huaxue Xuebao, Acta Phys. Chim. Sini., vol. 27, pp. 479-485, 2011.
[141] M. Zhu, C. J. Weber, Y. Yang, M. Konuma, U. Starke, K. Kern, et al.,
96
"Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes," Carbon, vol. 46, pp. 1829-1840, 2008.
[142] S. C. Ray, Z. N. Tetana, R. Erasmus, A. Mathur, and N. J. Coville, "Carbon spheres for energy applications: Raman and X-ray photoemission spectroscopy studies," Int. J. Energ. Res., vol. 38, pp. 444-451, 2014.

無法下載圖示 全文公開日期 2020/07/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE