簡易檢索 / 詳目顯示

研究生: 吳政惠
Cheng-Hui Wu
論文名稱: 以射頻磁控濺鍍法沉積鈦酸鋇薄膜及其性質分析
Fabrication and Characterization of BaTiO3 film prepared by RF magnetron sputtering
指導教授: 朱瑾
Jinn P. Chu
口試委員: 王錫福
S. F. Wang
郭東昊
D. H. Kuo
曾俊元
T. Y. Tseng
段維新
W. H. Tuan
梁元彰
Y. C. Liang
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 143
中文關鍵詞: 射頻磁控濺鍍法鈦酸鋇介電常數漏電流密度導電機制銅製程金屬內連接導線六方晶鈦酸鋇
外文關鍵詞: leakage current density, conduction mechanism, hexagonal barium titanate
相關次數: 點閱:329下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用傳統固態反應法並藉由添加不同混合比例的氧化鑭 (La2O3) 或氧化釤 (Sm2O3) 製備含鑭及含釤之鈦酸鋇靶材,主要以添加物的混合莫爾比例來區分,依序為1%La、3%La、5%La、7%La和1%Sm、3%Sm、5%Sm、7%Sm,並且利用射頻磁控溅鍍法來沉積其相對應的薄膜。所得之薄膜經成分分析以添加物含量之原子百分比可表示為0.1La、1.4La、2.4La、2.8La和0.1Sm、1.0Sm、1.5Sm、2.2Sm。
    此研究重點是討論在不同的退火溫度和薄膜中不同含量及種類的添加物對鈦酸鋇薄膜之結構和電性之間的相互關係。藉由X光繞射的量測證實初鍍薄膜為非晶質狀態,經由快速退火處理後,可得到結晶性較佳之薄膜。根據原子力顯微鏡掃描之結果,膜表面粗糙度隨著退火溫度的增加而增加,也隨著添加量的增加而減少。此外,在鍵結能的分析顯示在少量添加時,鑭和釤分別佔據鈦酸鋇晶格中A位置和B 位置;反之當添加量較多時,會形成氧化鑭和氧化釤並存在鈦酸鋇的結構中。在電性方面,介電常數隨著退火溫度增加而增加,是由於較佳的結晶性和較大的晶粒所造成;而漏電流大小和添加物種類有相關性,其機制由低電場到高電場分別為Schottky, Poole-Frankel, and Tunneling emission。
    此外,我們也將鈦酸鋇薄膜沉積至以銅錸合金[Cu(ReNx)]為電極的矽基板上,在不同退火溫度下,探討銅合金電極和鈦酸鋇薄膜之間的界面、電性行為並觀察銅合金電極和矽基板之間的熱穩定性。依聚焦離子束、穿透式電子顯微鏡的結果得知當退火溫度升高至873K時,在鈦酸鋇和銅合金之間仍無明顯的反應。由X光繞射和電子能譜圖結果得知當退火溫度升高至973K時,銅錸合金薄膜仍以金屬銅的結晶相為主,只有極少量的氧化銅生成,並無發現銅矽化合物,顯示此合金具有良好的熱穩定性並適合當作金屬/絕緣體/金屬結構之電極材料。
    然而在近十年對鈦酸鋇的研究中,主要注重於探討正方晶結構的鈦酸鋇之介電、鐵電特性,對於高溫相六方晶結構的鈦酸鋇少有報導。本實驗成功的利用射頻磁控溅鍍法製造含鈷之鈦酸鋇薄膜並經由還原氣氛下之退火處理,最後經X光繞射量測證實為六方晶結晶結構之鈦酸鋇。本實驗採用在還原氣氛下的退火處理,目的是為了使氧氣缺乏,並且依據缺陷化學的理論,受體添加也能達到與還原處理相同的目的。


    200-nm-thick La- and Sm-doped BaTiO3 thin films with A/B ratio of unity fabricated by magnetron sputtering on the Pt/Ti/SiO2/Si substrate have been characterized. The effects of post-annealing and the amount of dopant on structure and electrical properties were studied. X-ray diffraction studies reveal that the films annealed at 750˚C show tetragonal BaTiO3 crystal structure without any detectable second phase formation. X-ray photoelectron spectroscopy results confirm that La substitutes the A site and Sm is in the B site in lightly doped films. La2O3 or Sm2O3 is present in the BaTiO3 structure when the dopant content is more than 1.4 at. % La or 1.0% Sm. The permittivity increases with increasing annealing temperature up to 750˚C due to the coarse grains and better crystallinity. The leakage current property is found to vary with the type of dopant.
    In addition, we attempted to deposit BaTiO3 film on the Si/SiO2/TaN/Cu(ReNx) substrate to investigate that a stable Cu-based contact stack to overcome Cu diffusion and oxidation problems encountered during the high dielectric constant oxide thin-film device integration. Our Si/SiO2/TaN/Cu(ReNx) contact stack is also beneficial from the barrierless scheme for improving the BaTiO3 thin-film device performance. Interfacial investigation reveals no extensive interaction between BaTiO3 and barrierless Cu contact stack after annealing up to 873 K. BaTiO3 on the low resistivity (4.5 μΩ-cm) Cu-based contact stack behaves fairly similar to that on the Pt counterpart as the symmetry of the leakage current is obtained using different work function contacts (Cu and Pt). As Cu is compatible with integrated circuit processing, our barrierless Cu(ReNx)/BaTiO3 contact stack is readily applicable for integration with Si-based devices.
    Numerous researches have reported the dielectric and ferroelectric properties of tetragonal-phase BaTiO3 in past decades, whereas very few researchers have investigated the physical properties of hexagonal-phase BaTiO3. In this study, the hexagonal structure of Co-doped BaTiO3 thin films were successfully fabricated on various substrates by magnetron sputtering deposition, subsequently by post-annealing treatment in forming gas.

    摘要 I Abstract III Acknowledgement V List of Contents VI List of Tables IX List of Figures X Chapter 1 Introduction 1 Chapter 2 Background 4 2-1. Properties of Barium Titanate (BaTiO3) 4 2-1-1. Structure of BaTiO3 4 2-1-2. Polarization mechanisms 6 2-1-3. Dielectric constant and dielectric loss 10 2-1-4. Microwave behavior (tunability) 13 2-1-5. Ferroelectricity 17 2-1-6. Electrical transport and conduction mechanisms 19 2-1-7. Applications of high-dielectric-constant films and ferroelectric films 24 2-2. Characterization and Application of Cu and Cu-based Alloys 31 2-2-1. Interconnects in integrated circuits 31 2-2-2. Electrode for metal-insulator-metal (MIM) capacitor 39 2-3. High-temperature Phase of Hexagonal-Barium Titanate 42 2-3-1. Crystal structure of hexagonal BaTiO3 42 2-3-2. Properties of hexagonal BaTiO3 45 2-4. Sputtering 46 2-4-1. Physics of Sputtering 46 2-4-2. Sputter deposition 46 2-4-3. Magnetron sputtering 47 2-4-4. DC and RF sputtering 48 Chapter 3 Structures and properties of La- and Sm-doped BaTiO3 sputtered films: Post annealing and dopant effects 51 3-1. Sample preparation 51 3-1-1. Target preparation 51 3-1-2. Thin film deposition 54 3-1-3. Top electrode deposition 54 3-2. Thin film characterizations 57 3-2-1. Composition analysis 57 3-2-2. Crystallography analysis 57 3-2-3. Microstructure analysis 57 3-2-4. Chemical binding state analysis 57 3-2-5. Electrical measurement 58 3-3-1. Composition 59 3-3-2. Crystallography 61 3-3-3. Microstructure 64 3-3-4. Chemical binding energy 71 3-3-5. Dielectric properties 77 3-3-6. Leakage current density 81 Chapter 4 Electrical and reliability characteristics of barrierless Cu-based contact for high dielectric constant oxide thin-film device integration 85 4-1. Sample preparation 85 4-1-1. Thin film deposition 85 4-1-2. Top electrode deposition 85 4-2. Thin film characterizations 87 4-2-1. Electrical resistivity measurement 87 4-2-2. Crystallography analysis 87 4-2-3. Microstructure analysis 87 4-2-4. Chemical binding state analysis 87 4-2-5. Leakage current density measurement 88 4-3. Results and discussion 89 4-3-1. Electrical Resistivity 89 4-3-2. Crystallography 91 4-3-3. Microstructure 94 4-3-4. Chemical binding energy 99 4-3-5. Electrical property 103 Chapter 5 Fabrication and characteristics of hexagonal barium titanate thin film 106 5-1. Sample preparation 106 5-1-1. Target preparation 106 5-1-2. Thin film preparation 109 5-1-3. Post-annealing treatment 109 5-2. Thin film characterization 111 5-2-1. Crystallography analysis 111 5-3. Results and discussion 112 5-3-1. Crystallography 112 Chapter 6 Conclusions 116 Appendix 125 Vita 126 List of Publications 127

    1. T. Ishira, K. Komatani, Y. Mixuhara, and Y. Takita, J. Am. Ceram. Soc., 75, 13 (1992).
    2. J. Zhang, D. Chi, H. Lu, Z. Chen, Y. Zhou, L. Li, G. Yang, S. Martin, and P. Hess, Jpn. J. Appl. Phys.,362, 76 (1997).
    3. S. Ezhilvalavan, Tseung-Yuen Tseng, Materials Chemistry and Physics, 65, p. 227 (2000).
    4. D. E. Kotecki et al., IBM J. RES. DEVELOP., 43, p.367 (1999).
    5. J. F. et al., Ferroelectrics, Vol. 116, p. 147 (1991).
    6. R. G. Hunsperger, “Integrated Optics: Theory and Technology” (1992).
    7. Bahaa E. A. Saleh and Malvin Carl Teich, “Fundamentals of Photonics” (1991).
    8. C. K. Cambell,“Surface Acoustic Wave Devices for Mobile and Wireless Communications”(1998).
    9. Michael Thompson and David C. Stone, “Surface-Launched Acoustic Wave Sensors”(1997).
    10. M. Yamamuka, T. Kawahara, T. Makita, A. Yuuki, and K. Ono, Jpn. J. Appl. Phys., Part 1 35, p.729 (1996).
    11. C. S. Hwang, S. P. Park, H. J. Cho, C. S. Kang, S. I. Lee, and M. Y. Lee, Appl. Phys. Lett., 67, p.2819 (1995).
    12. J. Im, O. Auciello, P. K. Baumann, S. K. Streiffer, D. Y. Kaufman, and A. R. Krauss, Appl. Phys. Lett., 76, p.625 (2000).
    13. G. Yang, H. Gu, J. Zhu, and Y. WANG, J. Cryst. Growth, 242, p.172 (2002).
    14. R. Liedtke, M. Grossmann, and R. Waser, Appl. Phys. Lett., 77, p. 2045 (2000).
    15. F. Yan, P. Bao, Z. Zhang, J. Zhu, Y. Wang, H. L. W. Chan, and C. L. Choy, Thin Solid Films, 375, p. 184 (2000).
    16. W. Hofman, S. Hoffmann, and R. Waser, Thin Solid Films 305, 66 (1997).
    17. S. F. Wang, Y. C. Hsu, J. P. Chu, and C. H. Wu, Appl. Phys. Lett., 88, 042909 (2006).
    18. S. F. Wang, Y. C. Wu, Y. C. Hsu, J. P. Chu, and C. H. Wu, Jap. J. Appl. Phys., 46, p. 2978 (2007).
    19. Jayesh Nath, Dipankar Ghosh, Wael Fathelbab, Jon-Paul Maria, Angus I. Kingon, Paul D. Franzon, and Michael B. Steer, “An Electronically – Tunable Microstrip Bandpass Filter Using Thin – Film Barium Strontium Titanate (BST) Varactors,” IEEE, Trans. Microwave Theory Tech., 53, pp. 2707-2712 (2005).
    20. Jayesh Nath, Dipankar Ghosh, Jon-Paul Maria, Michael B. Steer, and Angus I. Kingon, “A Tunable Combline Bandpass Filter Using Thin Film Barium Strontium Titanate (BST),” Proceedings of the Asia Pacific Microwave Conference (APMC), New Delhi, India, pp. 939-940 (2004).
    21. G. Matthaei, L. Young, and E. M. T. Jones, “Microwave filters, impedance matching networks, and coupling structures,” Artech House Inc., Norwood (1980).
    22. Jayesh Nath, Dipankar Ghosh, Wael Fathelbab, Jon-Paul Maria, Angus I. Kingon, Paul D. Franzon, and Michael B. Steer, “A Tunable Combline Bandpass Filter Using Thin Film Barium Strontium Titanate Interdigital Varactors on an Alumina Substrate,” IEEE MTT-S Int. Microwave Symp.Dig., in press (2005).
    23. A. J. Moulson and J. M. Herbert, “Electroceramics Materials, Properties, Applications,” Chapman and Hall (1990).
    24. Y. S. Cho, K. H. Yoon, “Dielectric ceramics,” Handbook of Advanced Electronic and Photonic Materials and Devices, Vol. 4 Ferroelectrics and Dielectrics, 175 (2000).
    25. E. M. Levin, and H. F. Mcmurdie, “Phase Diagrams For Ceramists,” The American Ceramic Society, USA (1975).
    26. Z. Jin, A. Tombak, J. P. Maria, B. Boyette, G. T. Stauf, A. I. Kingon, and A. Mortazawi, “Microwave Characterization of Thin Film BST Material Using a Simple Measurement Technique,” IEEE, MTT-S Int. Microwave Symp. Dig., 2, pp.1201-1204 (2002).
    27. D. J. Taylor, “Handbook of Thin Film Devices,” 5, Academic Press, USA (2000).
    28. S. S. Gevorgian, T. Martinsson, P. L. J. Linner, and E. L. Kollberg, “CAD models for multilayered substrate Interdigital capacitors,” IEEE Trans. Microwave Theory Tech., 44, pp. 896-904 (1996).
    29. Z. Jin, “Frequency Agile RF/microwave Circuits using BST Varactors,” PhD Thesis, NCSU (2003).
    30. R. Waser, “Nanoelectronics and Information Technology,” Wiley-VCH, Germany (2003).
    31. Chu-Fang Liu, “Preparation and Characterization of Mn-doped BaTiO3 Films By RF Sputtering,” Master Thesis, NTOU (2002).
    32. Milton Ohring, “Electrical and Magnetic properties of Thin Films,” The material Science of Thin Films (1992).
    33. H. S. Nalwa, “THE ELECTRICAL PROPERTIES OF HIGH DIELECTRIC CONSTANT AND FERROELECTRIC THIN FILMS FOR VERY LARGE SCALE INTEGRATION CIRCUITS,” Handbook of Thin Film Materials, Vol. 3, Ferroelectric and Dielectric Thin Films (2002).
    34. Y. Xu, “Ferroelectric Materials and Their Applications,” Elsevier Science, Amsterdam (1991).
    35. F. Jona and G. Shirane, “Ferroelectric Crystals,” Dover, New York (1993).
    36. M. E. Lines and A. M. Glass, “Principles and Applications of Ferroelectrics and Related Materials,” Clarendon, Oxford (1977).
    37. M. H. Francombe, “Ferroelectric Films for Integrated Electronics,” Physics of Thin Films, Vol. 17, p. 225, Academic Press, USA (1993).
    38. P. C. Fazan, Integ. Ferroelec. 4, 247 (1994).
    39. J. F. Scott, “Ferroelectric Memories.” Springer-Verlag, Berlin (2000).
    40. T. Hori, “Gate dielectrics and MOS ULSIs, Principles, Technologies, and applications,” Springer-Verlag, Berlin (1997).
    41. J. Carrano, C. Sudhama, V. Chikarmane, J. Lee, A. Tasch, W. Shepherd, and N. Abt, IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, 38, 690 (1991).
    42. R. Moazzami, C. Hu, and W. H. Shepherd, IEEE Trans. Electron Devices 39, 2044 (1992).
    43. C. Sudhama, A. C. Campbell, P. D. Maniar, R. E. Jones, R. Moazzami, C. J. Mogab, and J. C. Lee, J. Appl. Phys. 75, p.1014 (1994).
    44. E. M. Philofsky, “1996 International Nonvolatile Memory Technology Conference,” p. 99 (1996).
    45. R. E. Jones, P. D. Maniar, R. Moazzami, P. Zurcher, J. Z. Witowski, Y. T. Lii, P. Chu, and S. J. Gillespie, Thin Solid Films 270, p. 584 (1995).
    46. T. Mihara, H. Yoshimori, H. Watanabe, and C. A. Pas de Araujo, Jpn. J. Appl. Phys. 34, p. 5233 (1995).
    47. D. W. Bondurant and F. P. Gnadinger, IEEE Spectrum 30 (1989).
    48. M. Sayer, Z. Wu, C. V. R. Vasant Kumar, D. T. Amm, and E. M. Griswold, Can. J. Phys. 70, p. 1159 (1992).
    49. D. W. Bondurant, Ferroelectrics, 112, p. 273 (1990).
    50. A. Ishitani, P. Lesaicherre, S. Kamiyama, K. Ando, and H. Watanabe, IEICE Trans. Electron. E76-C, p. 1564 (1993).
    51. S. Sinharoy, H. Buhay, D. R. Lampe, and M. H. Francombe, J. Vac. Sci. Technol., A 10, p. 1554 (1992).
    52. D. H. Kim, S. L. Cho, K. B. Kim, J. J. Kim, J. W. Park, and J. J. Kim, Appl. Phys. Lett., 69, p. 4182 (1996).
    53. J. O. Olowolafe, J. Li, J. W. Mayer, and E. G. Colgan, Appl. Phys. Lett., 58, p. 469 (1991).
    54. B. Li, T. D. Sullivan, T. C. Lee, and D. Badami, Microelectronics Reliability, 44, p. 365 (2004).
    55. G. S. Chae, H. S. Soh, W. H. Lee, and J. G. Lee, J. Appl. Phys., 90, p. 411 (2001).
    56. J. You, J. Kang, D. Kim, J. J. Pak, and C. S. Kang, Solar Energy Mater. Solar Cells, 79, p. 339 (2003).
    57. S. P. Murarka and S. W. Hymes, “Copper metallization for ULSI and beyond,” Critical Reviews in Solid State and Materials Sciences, 20, p. 87 (1995).
    58. S. P. Heng, International Symposium on VLSI TSA, p. 164 (1995).
    59. H. Ono, T. Iijima, N. Ninomiya, A. Nishiyama, Y. Ushiku, and H. Iwai, “Topology of Silver Films Annealed in Air,” Japan Society of Appl. Phys., 40th Spring Meeting, Ext. Abstracts, p. 814 (1993).
    60. J. Tao, N. W. Cheung, and C. Hu, “Electromigration characteristics of copper interconnects,” IEEE Electron Device Lett., 14, p. 249 (1993).
    61. H. K. Kang, I. Asano, C. Ryu, and S. S. Wong, “Grain structure and electromigration properties of CVD Cu metallization,” in 1993 IEEE VMIC Conf., p. 223 (1993).
    62. K. P. Rodbell, E. G. Colgan, and C. K. Hu, “Manufacturability versus reliability issues relevant to interconnect metallizations,” in Proc. of Advanced Metallization for Devices and Circuits-Science, Technology and Manufacturability, p. 59 (1994).
    63. R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits 2nd Edition, John Wiley & Sons, Inc., p. 1 (1986).
    64. Mayumi Takeyama, Atsushi Noya, Touko Sase, Akira Ohta, and Katsutaka Sasaki, J. Vac. Sci. Technol. B 14(2) (1996).
    65. W. F Wu, K. L Ou, C. P Chou, and C. C Wu, J. Electrochem. Soc., 150 (2) G83-G89 (2003).
    66. X. P. Qu, J. J. Tan, M. Zhou, T. Chen, Q. Xie, G. P. Ru, and B. Z. Li, Appl. Phys. Lett. 88, 151912 (2006).
    67. L. C. Leu, D. P. Norton, L. McElwee-White, and T. J. Anderson, Appl. Phys. Lett., 92, 111917 (2008).
    68. Y. Liu, S. Song, D. Mao, H. Ling, and M. Li, Microelectronic Engineering, 75 (3), p. 309-315 (2004).
    69. J. P. Chu and C. H. Lin, Appl. Phys. Lett., 87, 211902 (2005).
    70. J. P. Chu, C. H. Lin, and Y. Y. Hsieh, J. Electro. Mater., 35, 76 (2006).
    71. J. P. Chu and C. H. Lin, J. Electron. Mater., 35, 1933 (2006).
    72. J. P. Chu, C. H. Lin, and V. S. John, Appl. Phys. Lett., 91, 132109 (2007).
    73. J. P. Chu, C. H. Lin, P. L. Sun, and W. K. Leau, J. Electrochem. Soc., 156, H540 (2009).
    74. J. P. Chu, W. K. Leau, and C. H. L in, Appl. Phys. Lett., 93, 164104 (2008).
    75. J. A. Babcock, S. G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. El-Kareh, IEEE Electron Device Lett., 22,230 (2001).
    76. M. Armacost, A. Augustin, P. Felsner, Y. Feng, G. Friese, J. Heidenreich, G. Hueckel, O. Prigge, and K. Stein, Tech. Dig.-International Electron Devices Meeting, p. 157 (2000).
    77. A. Kar-Roy, C. Hu, M. Racanelli, C. A. Compton, P. Kempf, G. Jolly, P. N. Sherman, J. Zheng, Z. Zhang, and A. Yin, in Proceedings of the IITC, p. 245 (1999).
    78. R. Bruchhaus, D. Pitzer, O. Eibl, U. Scheithauer, and W. Hoesler, Mater. Res. Soc. Symp. Proc., 243, 123 (1992).
    79. K. C. Tsai, W. F. Wu, C. C. Chao, J. T. Lee, and S. W. Shen, Jpn. J. Appl. Phys., Part 1, 45, 5495 (2006).
    80. K. C. Tsai, W. F. Wu, and C. G. Chao, J. Electron. Mater., 35, G492 (2006).
    81. K. C. Tsai, W. F. Wu, C. G. Chao, and C. P. Kuan, J. Electrochem. Soc., 153, G492 (2006).
    82. W. Fan, S. Saha, J. A. Carlisle, O. Auciello, R. P. H. Chang, and R. Ramesh, Appl. Phys. Lett., 82, 1452 (2003).
    83. W. Fan, S. Saha, J. A. Carlisle, O. Auciello, R. P. H. Chang, and R. Ramesh, J. Appl. Phys., 94, 6192 (2003).
    84. S. Ezhilvalavan and Tseung Yuen Tseng, Thin Solid Films, 360, p. 268-273 (2000).
    85. C. H. Wu, J. P. Chu, C. H. Lin, and S. F. Wang, J. Electrochem. Soc., 156 (12) G226 (2009).
    86. J. P. Chu, Y. Y. Hsieh, C. H. Lin, and T. Mahalingam, J. Mater. Res., 20, 6, p. 1379 (2005).
    87. C. H. Lin, J. P. Chu, T. Mahalingam, T. N. Lin, and S. F. Wang, J. Electro. Mater., 32, 11, p. 1235 (2003).
    88. C. H. Lin, J. P. Chu, T. Mahalingam, T. N. Lin, and S. F. Wang, J. Mater. Res., 18, 6, p. 1429 (2003).
    89. T. Mahalingam, C. H. Lin, L. T. Wang, and J. P. Chu, Mater. Chem. and Phys., 100, p. 490 (2006).
    90. J. P. Chu, C. H. Lin, and V. S. John, Vacuum, 83, p. 668 (2009).
    91. Akimoto, J., Gotoh, Y. and Oosawa, Y., Acta Cryst., C50, p. 160-161 (1994).
    92. R. M. Glaister and H. F. Kay, Proc. Phys. Soc., 76, p. 763 (1960).
    93. C. N. R. Rao and J. Gopalakrishnan, “New Directions in Solid State Chemistry,” p. 52-57 (1997).
    94. O. Eibl, P. Pongratz, P. Skalicky and H. Schmelz, “Extended defects in hexagonal BaTiO3,” Philosophical Magazine A, 60, p. 601-612 (1989).
    95. S. F. Wang, Y. C. Hsu, Jinn P. Chu and C. H. Wu, Appl. Phys. Lett., 88, 042909 (2006).
    96. C. V. R. Vasant Kumar and Abhai Maningh, IEEE, p. 713 (1990).
    97. C. V. R. Vasant Kumar, Ajay Dhar, and Abhai Maningh, Appl. Phys. Lett., 60 (8), 24 (1992).
    98. Jung-Kun Lee, Kug-Sun Hong and Jin-Wook Jang, J. Am. Ceram. Soc., 84 (9) (2001).
    99. C. H. Wu, J. P. Chu, and S. F. Wang, J. Appl. Phys. 98, 026109 (2005).
    100. P. C. Joshi and M. W. Cole, Appl. Phys. Lett. 77, 289 (2000).
    101. D. Kim, Appl. Surf. Sci. 218, 78 (2003).
    102. J. I. Itoh, D. C. Park, N. Ohashi, I. Sakaguchi, I. Yashima, H. Haneda, and J. Tanaka, Jpn. J. Appl. Phys., PartⅠ, 41, 3798 (2002).
    103. K. Takada, E. Chang, and D. M. Smith, J. Am. Ceram. Soc. 19, 147 (1985).
    104. S. F. Wang, Jinn P. Chu, C. C. Lin, and T. Mahalingam, J. Appl. Phys. 98, 014107 (2005).
    105. John F. Moulder, William F. Stickle, Peter E. Sobol, Kenneth D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy,” Perkin-Elmer Corporation (1992).
    106. C. S. His, C. Y. Chen, N. C. Wu, and M. C. Wang, J. Appl. Phys. 94, 598 (2003).
    107. M. S. Tsai, S. C. Sun, and T. Y. Tseng, J. Appl. Phys. 82, 3482 (1997).
    108. C. C. Hwang, C. C. Jaing, M. J. Lai, J. S. Chen, S Huang, M. H. Juang, and H. C. Cheng, Electrochem. Solid-State Lett. 3, 563 (2000).
    109. S. S. Kim and C. Park, Appl. Phys. Lett. 75, 2554 (1999).
    110. S. Y. Lee and T. Y. Tseng, Appl. Phys. Lett. 80, 1797 (2002).
    111. The Materials Science of Thin Films, Milton Ohring (1992).
    112. C. H. Wu, J. P. Chu, W Z. Chang, V. S. John, S. F. Wang, and C. H. Lin, J. Appl. Phys., 103, 014106 (2008).
    113. J. Lee, Y. C. Choi, and B. S. Lee, Jpn. Appl. Phys., Part 1, 36, 3644 (1997).
    114. Y. C. Hsu, Densification, Microstructure, Evolution and Microwave Dielectric Properties of Hexagonal Ba(Ti1-xRx)O3 ceramics (R = Mn, Fe, Co, Ni, Zn, Mg, In), MS Thesis, NTUT, Taiwan (2006).

    QR CODE